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a b s t r a c t

For several decades, the Discrete Interaction Approximation (DIA) for nonlinear resonant four-wave inter-
actions has been the engine of third-generation wind-wave models. The present study presents a Gener-
alized Multiple DIA (GMD) which expands upon the DIA by (i) expanding the definition of the
representative quadruplet, (ii) formulating the DIA for arbitrary water depths, (iii) providing complimen-
tary deep and shallow water scaling terms and (iv) allowing for multiple representative quadruplets. The
GMD is rigorously derived to be an extension of the DIA, and is backward compatible with it. The free
parameters of the GMD are optimized holistically, by optimizing full model behavior in the WAVEWATCH
III� wave model as reported in a companion paper. Here, a cascade of GMD configurations with increasing
complexity, accuracy and cost is presented. First, the performance of these configurations is discussed
using idealized test cases used to optimize the GMD. It is shown that in deep water, GMD configurations
can be found which remove most of the errors of the DIA. The GMD is also capable of representing four-
wave interactions in extremely shallow water, although some remaining spurious behavior makes appli-
cations of this part of the GMD less suitable for operational wave models. Finally, several GMD configu-
rations are applied to an idealized hurricane case, showing that results from idealized test cases indeed
are representative for real-world applications, and confirming that such GMD configurations are econom-
ically feasible in operational wind wave models. Finally, the DIA results in surprisingly large model errors
in hurricane conditions.

Published by Elsevier Ltd.

1. Introduction

Numerical modeling of wind waves has been a subject of inter-
est for many decades, arguably starting in earnest with operational
wave prediction for the D-day invasion of Normandy in 1944
(Sverdrup and Munk, 1947). Initial models considered representa-
tive wave heights and periods only. Starting with Gelci et al. (1956,
1957), wind wave modeling has focused on spectral descriptions of
the wave field based on earlier work with radio waves of Rice
(1944). Most such wave models are based on some form of the
spectral balance equation of Hasselmann (1960).

DF
Dt
¼ Stot ¼ Sin þ Snl þ Sds; ð1Þ

where F is the variance or energy spectrum of the wind waves, and S
represent sources and sinks. Many models now use a balance equa-
tion for the wave action spectrum to account for (linear) wave–cur-
rent interactions, based on the work of Bretherthon and Garrett

(1968). Otherwise, the latter equation retains all relevant character-
istics of Hasselmann’s equation (1).

The left hand side of Eq. (1) represents linear wave propagation.
The right side of Eq. (1) represents the total effects of sources and
sinks (Stot) on spectral energy. Traditionally, the sources and sinks
essential for describing wave growth and decay are divided into
wind input (Sin), nonlinear interactions (Snl) and dissipation (Sds).

In these source terms, the four-wave resonant nonlinear inter-
actions play an important role. All other source terms are operating
locally in spectral space, increasing or decreasing the local energy
or action density. Hence, they can only make individual wave com-
ponents higher or lower. Nonlinear interactions redistribute en-
ergy over spectral space, and it is generally believed that this
fourth-order nonlinear process is the lowest order process (in deep
water) able to redistribute energy over the spectrum. Therefore, it
is critical to reproduce the observed down-shifting of energy in fre-
quency space during wave growth. Furthermore, these interactions
stabilize the spectral shape at high frequencies. These essential
characteristics of the four-wave nonlinear interactions were solidly
established in the Joint North Sea Wave Experiment (JONSWAP,
Hasselmann et al., 1973). Subsequently, an international wave
model intercomparison study (SWAMP group, 1985) concluded
that it is essential to explicitly account for these interactions in
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wave models. This resulted in the development of the first so-
called third-generation wave model (WAM, WAMDIG, 1988). Our
understanding of these nonlinear interactions goes back to the
1960s, with seminal papers by Phillips (1960), Hasselmann
(1962, 1963a,b) and Zakharov (1968), reviews of the interactions
and their impact can be found, for instance, in Masuda (1980), Phil-
lips (1981), Young and Van Vledder (1993), Komen et al. (1994)
and Van Vledder (2006).

The nonlinear interactions describe the resonant exchange of
energy, momentum and action between a ‘‘quadruplet’’ of four
spectral components with wavenumber vectors k1 through k4

and (radian) frequencies r1 through r4 (r ¼ 2pf ) satisfying the
resonance conditions (Hasselmann, 1962, 1963a):

k1 þ k2 ¼ k3 þ k4; ð2Þ

r1 þ r2 ¼ r3 þ r4; ð3Þ

where wavenumber k ¼ jjkjj and frequency r satisfy the dispersion
relation

r2 ¼ gk tanh kd ð4Þ

and where g is the acceleration of gravity and d is the (mean) water
depth. The interactions are conventionally expressed in terms of the
rate of change of the action spectrum in terms of the wavenumber
vector k, and are computed using a Boltzmann integral as

@n1

@t
¼
Z Z Z

G k1;k2;k3;k4ð Þdk dr

� n1n3 n4 � n2ð Þ þ n2n4 n3 � n1ð Þ½ �dk2 dk3 dk4; ð5Þ

where ni is the action density at component i; ni ¼ nðkiÞ; G is the
coupling coefficient (Webb, 1978; Herterich and Hasselmann,
1980), and dk and dr are delta functions representing the resonance
conditions (2) and (3). An important feature used in computing
nonlinear interactions is the symmetry of computations related to
the concept of detailed balance (Hasselmann, 1966; Komen et al.,
1994, Section 2.3.8), which states that for quadruplets satisfying
the resonance conditions (2) and (3) action changes dn are related
as

�dn1 ¼ �dn2 ¼ dn3 ¼ dn4: ð6Þ

Much progress has been made on the efficient solution of these
equations, by, for instance, Masuda (1980), Tracy and Resio (1982),
Resio and Perrie (1991), Komatsu and Masuda (1996) and Van
Vledder (2000), and a recent review can be found in Van Vledder
(2006).

With the above studies, numerical implementations of the full
nonlinear interactions according to Eq. (5) are well established.
Portable computational packages are available (e.g., Van Vledder,
2002a, 2006), and have been implemented in wave models like
SWAN and WAVEWATCH III�. However, even the optimized full
interaction routines are computationally expensive due to the mul-
tiple integrations over the spectral space and the complexity of the
interaction coefficient G. When applied in numerical wave models,
these algorithms are orders of magnitude more computationally
expensive than all other aspects of the wave model combined. Eco-
nomical feasibility of wave models at operational forecast centers
now allows for interactions to take up most of the computational
resources, but requires that they cannot be more than one order
of magnitude more expensive that the remainder of the wave
model.1

The seminal breakthrough making operational third-generation
wave models feasible was the development of the Discrete Interac-
tion Approximation (DIA) by Hasselmann et al. (1985), denoted

here as HHAB. HHAB introduced several simplifications to the com-
putation of the nonlinear interactions. (i) The multi-dimensional
integral of Eq. (5) is replaced by what HHAB define as a ‘‘discrete
equivalent’’ while using the concept of detailed balance from Eq.
(6). (ii) The complex interaction coefficient G is replaced by a sim-
ple scaling function, which (iii) is considering deep water only.
With these assumptions and simplifications Eq. (5) becomes
[HHAB Eq. (5.4)]

dn1

dn2

dn3

dn4

0
BBB@

1
CCCA ¼

�1
�1
11

0
B@

1
CAC B n1n2 n3 þ n4ð Þ � n3n4 n1 þ n2ð Þ½ �DkDt; ð7Þ

where C is a proportionality constant, B a scaling function and Dk
and Dt are an infinitesimal phase-space element and time interval,
respectively. Furthermore, (iv) only a subset of all resonant quadru-
plets is used, defined by Eqs. (2) and (3), and by

k1 ¼ k2

r3 ¼ ð1þ kÞr1

r4 ¼ ð1� kÞr1

9>=
>;; ð8Þ

where k is a constant. In the initial applications of the DIA in the
WAM model (WAMDIG, 1988) k ¼ 0:25. This setting is still used
in most third-generation models.

Note that the ‘‘discrete’’ interactions (7) computed for a repre-
sentative quadruplet (8) replace an integration in spectral space
along a locus of possible interaction configurations (e.g., Webb,
1978; Tracy and Resio, 1982). This represents a systematic differ-
ence between solving the full Boltzmann integration and the dis-
crete approach, that cannot be removed by simply adding
representative quadruplets. In this sense the ‘‘discrete equivalent’’
introduced by HHAB is not fully ‘‘equivalent’’ with the exact
interactions.

For these quadruplets, the corresponding discrete source term
contributions dSnlðf ; hÞ for the energy spectrum Fðf ; hÞ are given as

dSnl;1

dSnl;3

dSnl;4

0
B@

1
CA ¼ D

�2
1
1

0
B@

1
CACg�4f 11

1 � F2
1

F3

ð1þ kÞ4
þ F4

ð1� kÞ4

 !
� 2F1F3F4

ð1� k2Þ4

" #
;

ð9Þ

where f and h are the spectral frequency and direction, respectively,
Fi ¼ Fðfi; hiÞ; dSnl;1 ¼ dSnlðfi; hiÞ, and C is the proportionality constant,
determined by model tuning (C ¼ 3� 107 in WAM, C ¼ 1� 107 in
WAVEWATCH III). Finally, D is a scaling function to account for ef-
fects of limited water depths (Hasselmann and Hasselmann, 1985),
first introduced in the WAM model (WAMDIG, 1988), and uniformly
applied to the entire source term

D ¼ 1þ 5:5
�kd

1� 5
6

�kd
� �

e�1:25�kd: ð10Þ

Here �kd is the mean relative water depth. Note that in this
shallow water approach, resonance conditions and interaction
contributions are still evaluated assuming deep water. Note also
that Eq. (9) explicitly assumes a logarithmic discrete frequency
distribution

riþ1 ¼ Xrri; ð11Þ

where i is the discrete frequency counter and Xr is the frequency
increment factor. In the original WAM model application Xr ¼ 1:1.

With its simplifications the DIA defined by Eqs. (8)–(10) be-
comes comparable in terms of computational costs with the rest
of a typical wave model. In a model with advanced (expensive)
numerics like WAVEWATCH III, the DIA accounts for roughly 25%
of the computational costs of the model.1 Based on practical experience at NCEP.
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Whereas the DIA was essential for the development of third-
generation wave models, it also has been recognized to have seri-
ous shortcomings. HHAB recognized that the DIA gives a realistic
representation of the exact interactions for the low-frequency po-
sitive lobe only, and that it results in spectra with a directional
spread that is too broad. It is therefore not surprising that much ef-
fort has been put into finding alternative accurate yet economical
parameterizations for the nonlinear interactions (e.g., Van Vledder
et al., 2000). Many of such approaches attempt to trade speed for
accuracy, either by reducing the computations for the exact inter-
actions, or by adding more complexity to the DIA. The former ap-
proach is typically characterized by applying various filtering
techniques to the nonlinear interactions (e.g., Snyder et al., 1998;
Hashimoto et al., 2002). The latter approach allows for more com-
plex descriptions of the representative quadruplet, addition of
more representative quadruplets, and additional tuning parame-
ters in the basic scaling function (e.g., Ueno and Ishizaka, 1997;
Hashimoto and Kawaguchi, 2001; Van Vledder, 2001, 2002b). A
‘midpoint’ between these approaches appears to be the SRIAM
algorithm (e.g., Komatsu, 1996; Tamura et al., 2008).
Unfortunately, this approach is not yet fully published in English
literature.

The present study focuses on expanding the DIA to improve its
accuracy while remaining sufficiently economical for use in opera-
tional wave models. This study has explored all previously sug-
gested expansions of the DIA, and full shallow water scaling
capabilities are added. The resulting Generalized Multiple DIA
(GMD) is presented in Section 2, and its numerical implementation
is discussed in Section 3. The ongoing development of the GMD has
been documented in full detail in various reports, conference pro-
ceedings and papers (Tolman, 2003, 2004, 2005, 2008b, 2009a,
2010; Tolman and Krasnopolsky, 2004).

An integral part of developing a GMD is the optimization of the
free parameters in the approximation. Traditionally, this has been
done by computing exact interactions for test spectra, and subse-
quently fitting approximations to most accurately represent the
exact interactions. However, due to the highly nonlinear nature
of the interactions, this is no guarantee for good overall model
behavior (e.g., Tolman, 2004). With this in mind, a holistic optimi-
zation approach has been introduced in Tolman (2005) and Tolman
and Krasnopolsky (2004). In this approach, the overall model inte-
gration behavior is considered for several idealized test cases to
optimize free parameters in the GMD. Details of the optimization
procedures are presented in a companion paper (Tolman and
Grumbine, 2013), and its results are presented in Section 4. Test re-
sults for the GMD for practical applications are presented in Sec-
tion 5. A discussion and conclusions are presented in Sections 6
and 7, respectively.

The holistic optimization approach requires a full wave model.
Here the WAVEWATCH III model is used (Tolman, 2009b, hence-
forth denoted as WW3), using its default settings with the excep-
tion of nonlinear interaction approaches. The DIA and the exact
interaction approaches are available in the standard model,
whereas the GMD has been added.

2. The Generalized Multiple Discrete Interaction Approximation

In the present study, the same starting point (7) is used as in
HHAB. Unlike in HHAB, the Generalized Multiple DIA (GMD) will
be constructed for arbitrary water depths. First, definitions of the
representative quadruplet are considered in Section 2.1. Spectral
definitions and conservation properties of the GMD are considered
in Sections 2.2 and 2.3. Scaling considerations are discussed in Sec-
tion 2.4, and the final GMD formulations are presented in
Section 2.5.

Note that this approach to construct a more general DIA has
been taken before by Rasmussen (1998), Van Vledder (2002b)
and Van Vledder and Bottema (2002). The present study expands
upon the former studies, particularly with respect to the definition
of the representative quadruplet, the assessment of the impact of
the choice of various spectral descriptions, and the construction
of scaling functions.

2.1. Representative quadruplets

The representative quadruplet is defined by the resonance con-
ditions (2) and (3) and by some additional restrictions like Eq. (8).
The latter equation defines the representative quadruplet by a sin-
gle parameter (k). Van Vledder (2001) has shown that a minimum
of three parameters is required to produce arbitrary representative
quadruplets.

For the GMD the following general quadruplet layout is used,

r1 ¼ a1 rr

r2 ¼ a2 rr

r3 ¼ a3 rr

r4 ¼ a4 rr

h2 ¼ h1 � h12

9>>>>>>>>>=
>>>>>>>>>;
; ð12Þ

where a1 þ a2 ¼ a3 þ a4 to satisfy the resonance condition (3), rr

is a reference frequency, and h12 is the angular gap between the
wavenumbers k1 and k2. The latter parameter can either be implicit
to the quadruplet definition, or can be an explicitly tunable
parameter.

A one, two, and three-parameter quadruplet definitions as used
in this study are defined in Table 1. The one-parameter ðkÞ quadru-
plet layout represents the traditional DIA approach. The two-
parameter ðk;lÞ quadruplet layout is taken from Tolman (2004).
In this approach, k1 and k2 are modified in the same ways as k3

and k4 in the traditional DIA approach, and h12 is implied by the
choice of l. The three-parameter ðk;l; h12Þ quadruplet layout is
an extension of the two-parameter layout with h12 as an additional
free parameter. The latter quadruplet definition can be considered
as the symmetric and compact equivalent to the three-parameter
quadruplet definition introduced by Van Vledder (2001) (see Tol-
man, 2005, Section 5.1). Since the discrete contributions to the
interactions are computed for each discrete spectral grid point,
the relation between the quadruplet and the discrete spectral grid
points (rd; hd) is also outlined in the table, with the discrete direc-
tion hd always aligned with the direction of k1 þ k2.

In Section 2.1 of Tolman (2008b) valid layouts of quadruplets as
a function of their free parameters are analyzed in detail. For deep
water and the one- and two-parameter quadruplet definition valid
quadruplets are found for

0 6 l < k 6 0:5; ð13Þ

which for the three-parameter quadruplet definition expands to

Table 1
One, two, or three parameter definitions of the representative quadruplet in the GMD.
kd or (rd; hd) represents the discrete spectral grid point for which the discrete
interaction contributions are evaluated. All quadruplets are aligned with the discrete
directions by taking k1 þ k2==kd .

Parameters a1 a2 a3 a4 h12 rr

ðkÞ 1 1 1þ k 1� k 0 rd

ðk;lÞ 1þ l 1� l 1þ k 1� k Implieda rd

ðk;l; h12Þ 1þ l 1� l 1þ k 1� k Free rd
1þl

a Assuming k1 þ k2 ¼ k3 þ k4 ¼ 2kd .

H.L. Tolman / Ocean Modelling 70 (2013) 11–24 13
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0 6 l < k 6 0:5
0 6 h12 6 180�

k valid for ðl; h12Þ for kd!1

9>=
>;: ð14Þ

Furthermore, it is shown that such quadruplets are valid for
arbitrary depths, although this does not include all valid quadru-
plets in shallow water.

2.2. Spectral description

Eq. (7) from which the DIA is expressed in terms of the action
spectrum nðkÞ, whereas the final DIA Eq. (9) is expressed in term
of the energy density spectrum Fðf ; hÞ. The GMD is derived in terms
of the latter spectrum, as this proved to be most conducive to opti-
mization (see Tolman, 2009a).

The transition from the nðkÞ spectrum to the Fðf ; hÞ spectrum
using the definition of action and conventional Jacobian transfor-
mations impacts Eq. (7) in two ways; it impacts the product term
in square brackets (henceforth denoted as P1234), and the phase
space element Dk. Using the spectral definitions and conventional
Jacobian transformations, the spectra are related as

nðkÞ ¼ cg Fðf ; hÞ
2pkr

ð15Þ

and the product term becomes

P1234 ¼
1

ð2pÞ3
cg;1F1

k1r1

cg;2F2

k2r2

cg;3F3

k3r3
þ cg;4F4

k4r4

� ��

� cg;3F3

k3r3

cg;4F4

k4r4

cg;1F1

k1r1
þ cg;2F2

k2r2

� ��
ð16Þ

Following the arguments and derivation of HHAB, albeit with the
full shallow water Jacobians for conversions of spectral densities
and spectral phase space elements, the source term contribution
dSnl;i becomes2

dSnl;i ¼
dni

DkiDt
¼ � 2pkr

cg

aiDf
Dfi
� � � � ; ð17Þ

where the ellipsis represents the constant, scaling function and
product terms in Eq. (7). Finally, following HHAB to imply from
the logarithmic discrete frequency grid (11) that aiDf ¼ Dfi (inde-
pendent of the choice of Xr), this becomes

dSnl;1

dSnl;2

dSnl;3

dSnl;4

0
BBB@

1
CCCA ¼

�1
�1

1
1

0
BBB@

1
CCCA2pkr

cg
� � � � ð18Þ

2.3. Conservation properties

A key property of the nonlinear interactions is the conservation
of energy, action and momentum. In the full interactions, defined
by Eqs. (2)–(5), the conservation of these three quantities is con-
tained in the quadruplet satisfying the resonance conditions, and
in the concept of detailed balance of Eq. (6) (e.g., Webb, 1978).
Retaining the resonance conditions and detailed balance in the
generic DIA of Eq. (7) assures conservation properties are retained.
Webb’s observations furthermore imply that details of the compu-
tation of the product term P1234 and scaling function B or C0B have
no impact on conservation properties of the parameterization, and
that separate weights can be added to individual terms in P1234

(e.g., Ueno and Ishizaka, 1997; Hashimoto and Kawaguchi, 2001;
Tolman, 2004) without impacting conservation properties.3

A complication in a numerical wave model is that the spec-
tral phase space is discretized, and that discrete phase space
elements generally do not coincide with the four components
of a (realization of a) quadruplet. Spectral energy densities Fi

can only be obtained by interpolation from the discrete phase
space

Fi ¼
X4

j¼1

wi;jFj; ð19Þ

where j represents the four surrounding discrete points in phase
space, and where wi;j are the corresponding weight factors. Consid-
ering Webb’s observations, this interpolation has no impact on con-
servation properties. Discrete contributions dSnl;i to the source term
are evaluated at the quadruplet components, and generally need to
be distributed over four surrounding points in the discrete phase
space. In the traditional DIA this is achieved consistent with the
above interpolation as

dSnl;i;j ¼ wi;jdSnl;i: ð20Þ

When this distribution of individual interaction contributions is ap-
plied to the logarithmic frequency grid (11), it can be shown that
wave energy is conserved, and that conservation of action and en-
ergy requires that the respective resonance conditions (3) and (2)
are satisfied (see Tolman, 2008b, Section 2.2). Consequently, the tra-
ditional DIA conserves all properties in deep water, but does not
conserve momentum in shallow water, and the latter deficiency is
removed in the GMD by evaluating the quadruplet for the actual
water depth.

2.4. Scaling considerations

The final building block of a GMD is the scaling function B. In
HHAB, no details are given on how this function is derived, but it
appears to be based on straightforward dimensional consider-
ations. Here, a more systematic derivation has been performed, fol-
lowing previous work by Van Vledder (2002b). A detailed
derivation can be found in Tolman (2008b), Section 2.5. Here only
basic concepts and final results will be presented.

The scaling function B in Eq. (7) consists of two main contribu-
tions; a scaling function representing the complex interaction coef-
ficient G in Eq. (5), and Jacobians resulting from the transition from
Eqs. (5)–(7). Also included in the scaling function are common fac-
tors arising in Eqs. (16) and (18), and purely aesthetic factors assur-
ing (i) full backward compatibility from the GMD to the DIA, and
(ii) to assure that a degenerate GMD with multiple copies of a sin-
gle representative quadruplet give the same results as a GMD with
a single copy of that quadruplet.

A complication occurs because the factor G describes both
‘weak’ interactions in deep water and intermediate depths, and
‘strong’ interactions in extremely shallow water. Whereas the for-
mer interactions are described in the traditional DIA, the latter are
not. In Section 2.5 of Tolman (2008b), it is shown that complimen-
tary ‘deep’ and ‘shallow’ scaling functions can be defined repre-
senting the weak and strong interactions, respectively, both with
their own proportionality constant C. hence, the product CB in
Eq. (7) becomes

C B ¼ 1
nq;d

CdeepBdeep þ
1

nq;s
CshalBshal; ð21Þ

where Cdeep and Cshal are the proportionality constants, and nq;d and
nq;s are the number of representative quadruplets with deep (weak)
and shallow (strong) scaling, respectively. Scaling with nq;d and nq;s

is added for the above mentioned aesthetic reasons. The ‘deep’ scal-
ing function is given as

2 See Tolman (2008b), Section 2.4.
3 Separate tunable constants not considered here, see Tolman (2004).

14 H.L. Tolman / Ocean Modelling 70 (2013) 11–24
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Bdeep ¼
k4þmr13�2m

ð2pÞ11 g4�m c2
g

; ð22Þ

where m is a tunable parameter. This scaling function represents a
minor modification to the deep water scaling function of the DIA,
modified to extend its applicability in intermediate water depths
up to kd 	 0:75. The shallow water scaling function represents a
new result from this study, and is given as

Bshal ¼
g2 k11

ð2pÞ11 cg

ðkdÞn; ð23Þ

where n is a tunable parameter, with typically n ¼ �3:5.

2.5. Putting it all together

In the previous sections, all elements necessary to construct a
shallow-water GMD from Eq. (7) are provided. Table 1 presents a
general three-parameter quadruplet definition that can be reduced
to the one-parameter quadruplet definition of the traditional DIA.
These quadruplets need to be evaluated at the actual water depth
(unlike in the traditional DIA) to assure conservation of energy, ac-
tion and momentum. Combining Eqs. (7), (16), (18) and (21), the
basic GMD equation corresponding to the DIA Eq. (9) becomes

dSnl;1

dSnl;2

dSnl;3

dSnl;4

0
BBB@

1
CCCA ¼

�1
�1

1
1

0
BBB@

1
CCCA 1

nq;d
CdeepBdeep þ

1
nq;s

CshalBshal

� �

� cg;1F1

k1r1

cg;2F2

k2r2

cg;3F3

k3r3
þ cg;4F4

k4r4

� �
� cg;3F3

k3r3

cg;4F4

k4r4

cg;1F1

k1r1
þ cg;2F2

k2r2

� �� �
;

ð24Þ

where the scaling functions Bdeep and Bshal, representing weak
and strong interactions, respectively, are given by Eqs. (22) and
(23). Eq. (24) reduces to Eq. (9) when assuming deep water
(and removing the shallow water scaling), and when using the
original quadruplet definition (8). This equation for discrete
source term contributions for individual discrete spectral grid
points is applied to the entire spectrum as is done in the tradi-
tional DIA.

3. Numerical implementation

In most third-generation wave models source terms are inte-
grated using a semi-implicit scheme, where the discrete spectral
increment DFðf ; hÞ is computed as (WAMDIG, 1988)

DFðf ; hÞ ¼ Sðf ; hÞDt
1� aDðf ; hÞDt

; ð25Þ

where a ¼ 1 determines the centricity of the scheme (Hargreaves
and Annan, 2001). The term D represent diagonal contributions of
the partial derivative of Snl with respect to F and follows from Eqs.
(24) and (20) as

dD1

dD2

dD3

dD4

0
BBB@

1
CCCA ¼

�P01
�P02

P03
P04

0
BBB@

1
CCCA 1

nq;d
CdeepBdeep þ

1
nq;s

CshalBshal

� �
; ð26Þ

where

P01 ¼
cg;1

k1r1

cg;2F2

k2r2

cg;3F3

k3r3
þ cg;4F4

k4r4

� �
� cg;3F3

k3r3

cg;4F4

k4r4

� �
; ð27Þ

P02 ¼
cg;2

k2r2

cg;1F1

k1r1

cg;3F3

k3r3
þ cg;4F4

k4r4

� �
� cg;3F3

k3r3

cg;4F4

k4r4

� �
; ð28Þ

P03 ¼
cg;3

k3r3

cg;1F1

k1r1

cg;2F2

k2r2
� cg;4F4

k4r4

cg;1F1

k1r1
þ cg;2F2

k2r2

� �� �
; ð29Þ

P04 ¼
cg;4

k4r4

cg;1F1

k1r1

cg;2F2

k2r2
� cg;3F3

k3r3

cg;1F1

k1r1
þ cg;2F2

k2r2

� �� �
: ð30Þ

This completes the equations needed for implementing the
GMD in a wave model. Apart from this, numerical algorithms need
to be optimized, particularly because the GMD is expected to dom-
inate computational requirements of a typical wave model. Details
of this optimization can be found in Section 5.1 of Tolman (2008b).

4. Parameter optimization

The GMD can be configured in many ways, with a potentially
large number of free parameters. The optimization techniques used
will be described here only cursorily. For a detailed description of
the parameter optimization of the GMD reference is made to the
companion paper (Tolman and Grumbine, 2013). The optimization
uses three basic concepts; (i) holistic optimization, (ii) genetic
optimization techniques, and (iii) incremental addition of com-
plexity. These three main concepts are discussed in Section 4.1.
Subsequently, deep and shallow water configurations and corre-
sponding test results are presented in Sections 4.2 and 4.3,
respectively.

4.1. Basic approaches

As mentioned in the introduction, it is essential to test interac-
tion approximations using full model integration behavior, and not
to fit the interactions for selected spectra only. A former approach
appears to have been used by HHAB in a subjective manner for ide-
alized wave growth conditions. Subsequent studies, however, gen-
erally consider fitting of interactions for test spectra only. The
‘holistic’ optimization approach using full model integration was
re-introduced by Tolman and Krasnopolsky (2004) and Tolman
(2005), introducing objective error measures not found in HHAB.

For the present study, six deep water and three shallow water
tests were constructed, expanding upon the two deep water cases
used in Tolman and Krasnopolsky (2004). The deep water tests
consist of traditional duration- and fetch-limited growth cases,
the ‘homogeneous front’ case of Tolman (1992), a one-point model
with continuously turning winds, a slanting fetch case, and a case
with wave growth in the presence of swell. The shallow water tests
consist of a one-point model with wave growth in diminishing
water depths, and both wind seas and swells approaching a beach.
Numerical details on the implementation of the test cases can be
found in Tolman (2010), Section 3.3.

For each test case approximately 50 spectra are saved. Results
for each GMD configuration are compared to results obtained with
the full nonlinear interactions according to the Webb–Resio–Tracy
method (Webb, 1978; Tracy and Resio, 1982; Resio and Perrie,
1991), as implemented in WW3 using the portable software pack-
age of Van Vledder (2002a, 2006).4 From the spectra obtained with
the WRT and GMD approaches, errors for 15 wave parameters are
computed, ranging from mean wave parameters such as significant
wave height and peak wave frequency, to full two-dimensional spec-
tra and nonlinear source terms.

A genetic optimization technique is used to simultaneously
optimize many free parameters in the GMD. Details of the optimi-
zation procedures can be found in Tolman and Grumbine (2013).

Finally, GMDs with increasing complexity have been consid-
ered. First, deep water is considered only, then shallow water is
added. First, a traditional DIA is considered with a one-parameter

4 Model version 5.04 used here.
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quadruplet definition, adding additional quadruplets, then the
two and three-parameter quadruplet definitions are considered
similarly.

4.2. Deep water

Following the argument of the previous paragraph, it is natural
to first address the GMD in a traditional DIA configuration, that is,
with one quadruplet and a one-parameter quadruplet definition.
The resulting configuration is presented in Table 2 as the G11d
configuration. For comparison with previous configurations, the ta-
ble also presents the original DIA configuration as used in many
wave models. This configuration is identified here as the WAM
configuration, after the first model to use this configuration (WAM-
DIG, 1988).5 The Table also presents the default configuration in the
WW3 model, identified as WW3. Finally, the Table shows the objec-
tive model errors as defined in Tolman and Grumbine (2013).

The next step in the optimization is to add more representative
quadruplets of the traditional DIA type. Incrementally increasing
the number of quadruplets while optimizing both k and Cdeep

shows clear improvements for nq ¼ 2 or 3 quadruplets, but no
notable additional improvements beyond nq ¼ 4 or 5 quadruplets,
consistent with Hashimoto and Kawaguchi (2001) and Van Vledder
(2005). The one-parameter quadruplet configuration allows for an-
other optimization experiment where the spectral space is sam-
pled with a (relatively large) number of pre-set values of k, and
where the corresponding interaction strengths Cdeep are optimized
individually. Such experiments independently confirm the satura-
tion of improvements found above. A good balance between accu-
racy and economy (small nq) appears to be found with nq ¼ 3. A
corresponding configuration6 is added to Table 2 as configuration
G13d.

The next level of complexity to be introduced in the GMD are
the two- and three-parameter quadruplet definitions. Optimiza-

tion has been performed by increasing the number of quadruplets
from nq ¼ 3 to 6. A good balance between accuracy and costs ap-
pears to be found for nq ¼ 5. Corresponding GMD configurations6

are presented in Table 2, which also shows a clear gain in model
accuracy through the objective model error.

So far, the GMD configurations are selected looking at overall
model errors only, without addressing actual model behavior. Be-
low, a representative selection of results of the optimization tests
is presented. Independent testing in realistic conditions will be
presented in Section 5.

Fig. 1 presents the significant wave height (Hs), peak frequency
(fp), mean direction (h), and directional spread (rh) as a function of
the offshore distance x for a slanting fetch case with offshore winds
under a 45� angle with a straight coastline. Presented are the re-
sults for the six configurations defined in Table 2, as well as the ref-
erence model results obtained with the WRT approach to the
nonlinear interactions (i.e., the model to be reproduced by the
GMD).

The DIA-equivalent GMD configurations (WW3, WAM, G11d,
red lines in Fig. 1) show clear errors in mean wave parameters
compared to the reference solution (WRT, green lines). Wave
height and peak frequency errors depend on the actual configura-
tion. The mean direction (h) is too close to the wind direction, and
directional spread (rh) is overestimated for all DIA equivalent con-
figurations. The more complex GMD configurations (G13d, G25d,
G35d, blue lines) generally show accurate representation of most
mean wave parameters, with the exception of the G25d configura-
tion (dashed blue line) resulting in clear errors for the mean wave
direction (h).

Fig. 2 shows some selected one-dimensional spectral results
from the slanting fetch case at 30 km offshore. For the energy spec-
trum Fðf Þ (Fig. 2(a)), the DIA-equivalent models (red lines) under-
estimate the expected spectral peak energy (WRT, green line) by
up to 40%. Increasing the complexity by going from the G13d con-
figuration to the G25d and G35d configurations (blue lines) sys-
tematically reduces the differences with the reference solution
(green line), with the latter two configurations removing most of
the model error. The corresponding steepness spectra
Gðf Þ ¼ k2Fðf Þ (Fig. 2(b)) highlight the behavior at higher frequen-

Table 2
Selected deep water GMD configurations with increasing complexity and accuracy. The WAM and WW3 configurations provide reference to present optional wave models. Note
that settings of Cshal, m and n are irrelevant for the deep water test cases, and that Cshal 
 0 corresponds to a deep-water-only quadruplet. Model errors for idealized deep water
test cases from Tolman and Grumbine (2013).

ID k l h12 (�) Cdeep error (%)

WW3 0.250 – – 1:00� 107 25.1

WAM 0.250 – – 3:00� 107 26.5

G11d 0.231 – – 2:54� 107 21.2

G13d 0.126 – – 5:80� 107 15.7

0.237 – – 4:32� 107

0.319 – – 1:43� 107

G25da 0.068 0.015 – 6:39� 107 11.0

0.115 0.077 – 3:58� 108 10.9b

0.192 0.125 – 4:35� 107

0.248 0.066 – 3:23� 107

0.349 0.145 – 1:87� 107

G35d 0.066 0.018 21.4 1:70� 108 9.3

0.127 0.069 19.6 1:27� 108

0.228 0.065 2.0 4:43� 107

0.295 0.196 40.5 2:10� 107

0.369 0.226 11.5 1:18� 107

a Dropped as preferred configuration.
b Error with smoother added to model.

5 Note that this represents the default WW3 model with the WAM configuration
for the DIA, but not the default WAM model.

6 Tolman and Grumbine (2013) indicate that multiple near-optimum solution can
be found.
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cies, showing similar behavior as observed for the energy
spectrum.

Fig. 2(c) shows the mean wave direction as a function of the
wave frequency hðf Þ, where 90� represents the direction perpen-
dicular to the shore. At high frequencies, wave components line
up with the wind direction where hðf Þ ¼ 45�. For lower frequen-
cies, waves propagate more parallel to the coast with wave compo-
nents with a period of approximately 10 s (f 	 0:1 Hz) traveling
parallel to the coast with hð0:1Þ 	 0�. At this offshore distance,
longer wave components propagate toward the coast (hðf Þ < 0�).
The traditional DIA configurations (red lines) generally result in
wave components that are lined up too much with the wind direc-
tion. The more advanced GMD configurations (blue lines) show a
generally good representation of the reference model results
(green line). Fig. 2(d) shows the directional spread as a function
of the frequency rhðf Þ. As with the mean directional spread, the
DIA-equivalent configurations overestimate spreads. Finally,
Fig. 2(e) shows the nonlinear interactions as a function of the fre-
quency Snlðf Þ. All configurations show similar behavior, with only
moderate improvements for more complex configurations.

Fig. 3 shows the corresponding energy and steepness spectra for
the duration-limited growth test after 6 h of model integration.
This test produces more typical spectra with strong peak enhance-
ment and an equilibrium range with constant steepness above the
spectral peak frequencies. In spite of the big differences in spectral
shape compared to those of the slanting fetch case in Fig. 2, the rel-
ative behavior of the different GMD configurations is nearly iden-
tical, and the results for the WRT and G35d approaches are
nearly identical.

Fig. 4 shows some two-dimensional wave spectra from the
fetch-limited test case 30 km offshore. Whereas all spectra look
similar due to the logarithmic scaling, there are nevertheless sig-
nificant differences in the spectral shape between the reference

(WRT) model results and the DIA-equivalent (WAM) approaches.
The G13d configuration removes most of the errors in the spectral
shape but underestimates the peak energies, whereas the results of
the G35d configurations follow the reference results most closely.

Fig. 5 shows the corresponding two-dimensional source terms.
Although there are clear differences in details of the interactions,
the distribution and magnitude of the interactions are surprisingly
similar. This is in stark contrast with previous studies where differ-
ent interaction approaches show large differences for test spectra.
Apparently, the holistic optimization of the interactions favors rel-
atively small differences in spectral shape to accommodate very
similar interactions and corresponding fluxes in the full wave mod-
el. In spite of the relatively small differences, the more complex
interaction approaches result in clearly superior interaction behav-
ior when compared to the exact (WRT) results.

Note that the G25d configuration requires the use of the conser-
vative high-frequency filter of Tolman (2011) to suppress high-fre-
quency spectral noise (see Figs. 5 and 6 of the latter paper).
Because the G25d and G35d are equally expensive to run, and
the G35d configuration is clearly superior, G25d should be consid-
ered as a non-preferred configuration in Table 2.

4.3. Shallow water

The next step is to optimize shallow water behavior of the GMD.
A simple way to limit the configurations to be considered is to start
from previously optimized deep water configurations, and expand
these to optimize shallow water behavior too. If shallow water
variables (Cshal;m;n) are added to existing deep water quadruplets,
or if shallow water quadruplets (Cdeep 
 0) are added, then deep
water test cases do not need to be addressed again. Consequently,
only the three shallow water test cases need to be used in the opti-
mization. In Tolman (2010), Section 4 a large number of configura-
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Fig. 1. Evolution in space of (a) significant wave height Hs , (b) peak frequency fp , (c) mean direction h, and (d) directional spread rh for a slanting fetch test with a wind under
45� with the coast. Green line: WRT. Dotted/dashed/solid red line: WAM/WW3/G11d. Dotted/dashed/solid blue lines: G13d/G25d/G35d. Solid black line in panel (c)
represents wind direction.

H.L. Tolman / Ocean Modelling 70 (2013) 11–24 17



Author's personal copy

tions has been optimized. Here, only a few optimized configura-
tions are presented in Table 3 to illustrate the potential and short-
comings of the GMD in representing strong four-wave interactions
in extremely shallow water. Note that the deep-water scaling with
m ¼ 0 or m optimized separately, yields a GMD that is valid up to
water depths as shallow as kd 	 0:75. For more details on this opti-
mization for intermediate water depths reference is made to Sec-
tion 4 of Tolman (2010).

The G111 configuration consists of the traditional DIA configu-
ration optimized for deep water, with a second fully optimized
one-parameter shallow water quadruplet added. The G1ss config-

uration consists of 13 one-parameter quadruplets with pre-set val-
ues of k. The deep water scaling functions use Cdeep as previously
optimized for deep water, whereas Cshal is optimized for each qua-
druplet. Note that one resulting quadruplet uses both deep and
shallow water scaling, whereas four quadruplets are switched off
using neither deep nor shallow water scaling. The G355 configura-
tion uses the three-parameter quadruplet definition. It starts from
the G35d configuration adding five quadruplets with shallow
water scaling only. Note that three of the shallow water configura-
tions effectively degenerate to the one-parameter quadruplet def-
initions with l undefined or l 	 0 and h12 	 0.
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Fig. 2. One-dimensional spectral quantities at x ¼ 30 km for slanting fetch case. (a) energy spectrum Fðf Þ, (b) steepness spectrum Gðf Þ, (c) mean direction hðf Þ, (d) directional
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The representation of strong interactions in the GMD is most
clearly illustrated in the test case with swell with fp ¼ 0:07 Hz
breaking on a beach with a slope of 1:250. Resulting one-dimen-
sional spectra and source terms for water depths of 3 and 1 m
are presented in Figs. 6 and 7, respectively.

If the nonlinear interactions are switched off (red lines in fig-
ures), the spectra are transformed only due to shoaling and refrac-
tion. However, wave energy is not redistributed in frequency space,
and hence the swell retains a sharp spectral signature as provided
on the input boundary of the model. Results for the DIA, which
does not represent strong interactions, are for all practical pur-
poses identical to those without considering nonlinear interactions
at all.

However, in extremely shallow water the strong interactions
are capable of redistributing energy in frequency space (e.g., Jans-
sen and Onorato, 2007). This is observed in Figs. 6 and 7 as the
model with the WRT approach (green lines) results in clear inter-
actions, as well as a clear spreading of the wave energy in fre-
quency space. The various GMD configurations (G111, G1ss,
G355) show a reasonable representation of the change in spectral
shape, albeit with a spurious shift of energy to lower frequencies.
Fig. 6(b) indicates that at 3 m water depth this spurious shift of en-
ergy is associated with a strong spurious signature in the nonlinear
source term. In shallower water the impact of the interactions as
well as the spurious shift of energy to lower frequencies in the
GMD configurations becomes stronger, as is illustrated in Fig. 7
for a water depth of 1 m.

Spurious shifting of energy to low frequencies can have a large
impact on coastal processes. Furthermore, the effects of four-wave
interactions in extremely shallow water also needs to be addressed
in the context of triad interactions (e.g., WISE Group, 2007), which
are likely to be dominant in practical spectral transformations in

the surf zone. As these interactions are neglected here, the results
for the surf zone are not expected to be very realistic. Whereas the
GMD results for extremely shallow water are clearly promising,
this part of the GMD does not appear ready for operational wave
modeling. Hence, only deep water scaling will be considered in
the practical tests in the following section.

5. Practical application

So far, all test cases considered have also been used in the opti-
mization, and are therefore not independent tests. Furthermore,
the test cases are highly idealized. Whereas all test cases deal with
model behavior necessary for practical models, they do not result
in realistically complex wave conditions. Finally, tests in realistic
conditions should be used to address computational costs of a
wave model based on the GMD compared to models using the tra-
ditional DIA or the WRT approach.

One such test is an idealized hurricane modeled with three
nested and moving grids (Tolman and Alves, 2005; Tolman,
2008a). The maximum wind speed is 45 m s�1, and the radius of
maximum winds is 50 km. The hurricane moves to the right (east)
with a speed of 5 m s�1. At the end of 24 h of model integration
spectra at 33 output locations are saved.

Table 4 shows errors and normalized run times for various GMD
configurations for the test. The errors for the traditional WAM and
WW3 configurations are similar to those obtained with the ideal-
ized test cases (compare to Table 2). Furthermore, increasing com-
plexity in the GMD configuration leads to a systematic reduction of
errors, albeit with somewhat larger resulting errors than in the ide-
alized test cases. Qualitatively, errors of the various GMD configu-
rations are also similar to those of the idealized test cases, as will
be illustrated below.

Fig. 4. Two-dimensional energy spectra Fðf ; hÞ from approaches as indicated in the panels for the slanting fetch growth test 30 km offshore (third offshore grid point).
Logarithmic scaling with factor 2 between contours and lowest contour at 0.10 m2 s. Frequencies ranging from 0 to 0.25 Hz, frequency grid lines at 0.05 Hz intervals.
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Fig. 8a shows wave heights after 24 h of wave model integration
from the hurricane test. The highest wave heights occur in the right
front (southeast) quadrant of the hurricane, and exceed 12 m.
Wave height errors in percent for the G11d, G13d and G35d config-
urations are presented in Figs. 8(b)–(d). For the traditional DIA con-
figuration (G11d, Fig. 8(b)) systematic errors occur in most
quadrants of the hurricane, with errors typically as large as 20%.
Whereas error patterns for other DIA configurations such as
WW3 and WAM are different, their magnitudes are similar (figures
not presented here). For the G13d configuration (Fig. 8(c)), errors
are greatly reduced with maximum errors generally below 10%,
but spread over large areas. For the G35d configuration
(Fig. 8(d)), wave height errors generally drop below 5%, and are
localized rather than wide spread.

The hurricane test includes a wide range of spectra, including
pure wind seas, pure swells, highly directionally sheared spectra,

and (transition to) multi-modal seas. Generally, the various GMD
configurations behave as in the optimization tests, even for bimo-
dal seas. This is illustrated in Fig. 9 with the model results for a
location 100 km to the left (west) of the eye. At this location, a
swell travels from the northern sector of the hurricane to the west,
and a locally generated wind sea travels to the south (Fig. 9(a)).
This results in a clearly bimodal energy spectrum Fðf Þ and steep-
ness spectrum Gðf Þ (Fig. 9(b) and (c)), and a non-traditional signa-
ture of the nonlinear interactions (Fig. 9(f)). For all parameters
presented in Fig. 9, increased complexity in the GMD results in im-
proved model behavior, including an accurate description of the
nonlinear interactions by the G35d configuration, where both
spectral peaks contribute significantly to the interactions.

Finally, Table 4 shows normalized run times of the model using
the selected GMD configurations. Run times are normalized with
run times obtained with the default WW3 model settings (i.e.

Fig. 5. Two-dimensional source terms Snlðf ; hÞ corresponding to Fig. 4. Logarithmic scaling with factor 2 between contours and lowest contour at �1� 10�5 m2. Blue colors
identify negative values.
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using the original DIA implementation in the model). The GMD in
WW3 configuration is equivalent to the default model, yet results
in a model that is approximately 20% more expensive (Tn 	 1:2)
than the model using the traditional DIA implementation, due to
the increased complexity of the GMD. The WW3, WAM and G11d
configurations are all based on the traditional DIA configuration,
and, therefore, require identical computational effort to compute
a single interaction. Yet, the latter two configurations result in a

more efficient model, with shorter normalized run times Tn. This
appears to be associated with smoother model integration for the
latter two configurations, resulting in an increase in the dynami-
cally computed source term integration time step (see Tolman,
1992). The model configuration with three traditional quadruplets
(G13d) results in a modest 50% increase in model run time
(Tn 	 1:5), whereas the most accurate GMD configuration (G35d)
results in a more substantial increase of model run times by up
to a factor of 3.5 (Tn 	 3:5). However, the latter configuration re-
moves most errors associated with the nonlinear interactions from
the wave model, at a model cost that is more than two orders of
magnitude less than the cost of using the full WRT interactions.

6. Discussion

The Discrete Interaction Approximation (DIA) has been the sta-
ple of third-generation wave models for decades. Whereas the
authors of the DIA recognized some of its weaknesses, and numer-
ous papers have been dedicated to improving or replacing the DIA
(see Introduction), it is nevertheless still used in its original form in

Table 3
Selected GMD configurations for shallow water starting from configurations optimized for deep water. n ¼ �3:5 in all configurations.

ID k l h12ðoÞ Cdeep Cshal m

G111 0.231 – – 2:54� 107 – 0

0.184 – – – 1:63� 105

G1ss 0.100 – – – 4:96� 104 �7.41

0.125 – – 7:84� 107 –

0.150 – – – –
0.175 – – – –
0.200 – – – 6:54� 105

0.225 – – 2:12� 107 –

0.250 – – 7:12� 106 –

0.275 – – 1:66� 107 –

0.300 – – – –
0.325 – – – –
0.350 – – 9:00� 106 3:52� 105

0.375 – – – 5:04� 105

0.400 – – – 1:84� 105

G355 0.066 0.018 21.4 1:70� 108 – �7.58

0.127 0.069 19.6 1:27� 108 –

0.228 0.065 2.0 4:43� 107 –

0.295 0.196 40.5 2:10� 107 –

0.369 0.226 11.5 1:18� 107 –

0.036 0.003 4.2 – 2:54� 105

0.105 0.104 0.5 – 1:58� 107

0.184 – 1.9 – 7:40� 105

0.360 0.225 44.1 – 5:04� 108

0.375 – 0.0 – 1:03� 106
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Fig. 7. Like Fig. 6 at 1 m water depth.

Table 4
Synopsis of model performance for hurricane test for various GMD
configurations. Tn is the model run time, normalized with the results of
the default wave model with the traditional DIA implementation.

ID Tn (–) Error (%)

WW3 1.20 27.5
WAM 0.99 28.7
G11d 1.05 26.3
G13d 1.50 19.1
G35d 3.53 14.9
WRT 1360a –

a Estimated; additional resource needed to make model runs feasible.
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most (operational) wind wave models. The present study presents
an expanded version of the DIA, the Generalized Multiple DIA
(GMD), which provides a more accurate alternative in deep water,

and expands the DIA to also represent strong interactions in extre-
mely shallow water. In the following paragraphs various aspects of
the GMD will be discussed.

Fig. 8. Results of idealized hurricane test. (a) Significant wave heights of WRT computations at end of computation. Contours at 1 m interval, highest wave height over 12 m.
(b)–(d) Wave height differences in % for various GMD configurations. Contours at 4% intervals, blue shading represent negative differences.
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Fig. 9. Spectral behavior of various nonlinear approaches for output point 100 km left of eye of hurricane. (a) Two-dimensional spectrum Fðf ; hÞ, factor 2 increment in contour
levels, lowest contour level at 10�4 m2 s. (b) One-dimensional spectrum Fðf Þ. (c) Steepness spectrum Gðf Þ. (d) Spectral direction rhðf Þ. (e) Directional spread rðf Þ. (f) Source
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The GMD utilizes an expanded quadruplet description. In addi-
tion to the traditional one-parameter quadruplet definition from
the DIA, a two-parameter definition from Tolman (2004) and a
new three-parameter quadruplet definition are available. The lat-
ter definition allows for arbitrary quadruplet configurations, and
can be considered as a compact and symmetric form of a three-
parameter definition of Van Vledder (2002b). The GMD uses the
full limited-depth dispersion relation in all equations, including
the depth-dependent configuration of quadruplets. The latter as-
sures that the GMD conserves energy, action and momentum at
arbitrary depths, unlike the DIA, which does not conserve momen-
tum for limited water depths.

Traditionally the DIA is considered for intermediate to deep
water conditions only, in which the nonlinear interactions are con-
sidered weak. In extremely shallow water, strong four-wave inter-
actions occur (Webb, 1978), and the test cases used to optimize the
GMD indicate that such interactions are strong enough to result in
large changes in spectral shape. Whereas the GMD results in an
adequate description of these interactions, it also results in some
spurious shifting of energy to low frequencies. The latter behavior
makes the GMD less suitable to represent strong interactions in
shallow water. Two additional issues need to be considered with
respect to the GMD in extremely shallow water. First, triad interac-
tions are ignored in all computations performed here. Since these
triad interactions are expected to dominate quadruplet interac-
tions in extremely shallow water (e.g., WISE Group, 2007), GMD
behavior in extremely shallow water may prove moot for opera-
tional wave models. Second, modification to the WRT computation
method to expand their validity in shallow water as suggested by
Janssen and Onorato (2007) are not yet included in the portable
WRT package used here. Future GMD experiments with strong
interactions in extremely shallow water need to be performed
using these modifications.

Returning to weak interactions in intermediate and deep water,
a traditional DIA configuration has been considered first. Using
three traditional DIA quadruplets (G13d configuration in Table 2)
removes most of the errors in the mean wave parameters, but
leaves notable errors in spectral shapes and spectral parameters.
Using five representative quadruplets with the full three-parame-
ter quadruplet definition (G35d configuration) removes much of
the remaining spectral errors. These errors for the dependent opti-
mization test are confirmed by an independent realistic test case.
The G13d configuration should be economically feasible in opera-
tional wave models, as it increases computational costs of the en-
tire wave model by a modest 50%. The G35d configuration
increases computational costs by a more substantial factor of 3.5.
This may or may not be economically feasible in operational mod-
els, but it at least will result in near exact model behavior for re-
search, with a model that is more than 2 orders of magnitude
cheaper than one based on the exact WRT Boltzmann integration.

Several additional observations can be made from the results of
the deep water idealized and realistic tests.

First, the conventional DIA configuration as used in the WW3
model results in a spectral peak that is systematically shifted to
higher frequencies (see Fig. 3). This associates overestimation of
spectral peak frequencies for wind seas with the default setting
of this model. Note that the low-frequency part of the spectrum
is described well, so that (initial arrival of) swell is expected to
be described better than wind seas.

Second, it is well known that when different source term
parameterizations like WRT or DIA are applied to the same spec-
trum, large differences are found in the resulting interactions.
When the GMD is optimized to optimally represent full model
integration behavior (holistic optimization), the opposite behavior
occurs; interactions Snlðf Þ for different parameterizations and con-
figurations are nearly identical (see Figs. 2(a) and (e), 4 and 5), at

the expense of notable differences in the shape of resulting spectra
Fðf Þ. Because the latter behavior is obtained by optimizing full
model behavior, it appears that a good representation of nonlinear
interactions (fluxes in the spectrum) is more important to describe
the evolution of the wave field than an accurate description of de-
tails of the spectral shape. Whereas it is not intuitively clear why
this should be the case, it does strongly support the need for holis-
tic optimization of interactions rather than optimization of interac-
tions for selected spectra.

Third, the realistic test case can give an indication of the magni-
tude of errors induced by the traditional DIA, as well as by various
GMD configurations. Perhaps surprisingly, the DIA results in sys-
tematic errors of more that 20% in the wave height for hurricane
conditions. A Lake Michigan test (see Tolman, 2010) shows smaller
impacts on mean wave parameters, but similarly large impacts on
spectral details.

The GMD configurations considered here are developed for the
default configuration of the WW3 model version 3.14. There is no
guarantee that the optimum GMD configurations found here are
also suitable for other source term packages describing growth
and decay of wind waves. At least, objective errors need to be
recomputed for other physics packages. Possibly, the optimization
experiments need to be repeated. Only if the configurations can be
shown to be equally accurate for a range of physics packages, can
the GMD configuration be considered as generally applicable.

7. Conclusions

A Generalized Multiple DIA (GMD) for nonlinear four-wave
interactions in wind wave spectra is rigorously derived. The GMD
expands on the traditional DIA by expanding the definitions of
multiple representative quadruplets, formulating the expressions
for arbitrary water depths, and by adding a scaling function to rep-
resent strong interactions in extremely shallow water (relative
depths kd� 0:5). Optimization of free parameters of the GMD is
performed by matching model behavior in test cases to model
behavior obtained with the full Boltzmann integral description of
the nonlinear interactions, and is presented in a companion paper
(Tolman and Grumbine, 2013). In the present paper a cascade of
deep and shallow water GMD configurations with increasing com-
plexity and accuracy is presented. Results of the test cases used for
the optimization of the free parameters in the GMD, and an inde-
pendent test representing hurricane conditions show that the
GMD is capable of removing most of the errors introduced by the
DIA in deep water, at costs that are not prohibitive for operational
wave modeling. Particularly in the hurricane test, errors intro-
duced by the traditional DIA are surprisingly large, indicating the
need for upgrading the nonlinear interaction parameterizations
in operational wind wave models. In shallow water the GMD is
capable of reproducing shallow water behavior of the exact inter-
actions, albeit with some spurious shifting of energy to lower fre-
quencies in extremely shallow water. The shallow water extension,
therefore, does not seem ready for application in operational wave
models, where its effects are most likely dominated by triad inter-
actions anyhow.
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