
U. S. Department of Commerce
National Oceanic and Atmospheric Administration

National Weather Service
National Centers for Environmental Prediction

5200 Auth Road Room 207
Camp Springs, MD 20746

Technical Note

A genetic optimization package for the Generalized
Multiple DIA in WAVEWATCH III R© †.

Hendrik l. Tolman‡

Environmental Modeling Center
Marine Modeling and Analysis Branch

Version 1.1, March 2012

this is an unreviewed manuscript, primarily intended for informal

exchange of information among ncep staff members

† MMAB Contribution No. 289.
‡ e-mail: Hendrik.Tolman@NOAA.gov

This page is intentionally left blank.

Abstract

This report describes a genetic optimization package for the Generalized
Multiple DIA (GMD) in the WAVEWATCH III modeling framework. This
report will be updated as needed, depending upon development of this
package or of the underlying wave model.

Change log

ver. WW rev. ∗ date comment

1.0 3.15.1 11596 December 23, 2010 Initial MMAB No. 289.
Experimental WW version
used for Tolman (2010).

1.1 3.15.2 18380 March 22, 2012 Bug fixes up to 3.14.13
Transition to ’zeus’ and Intel.

∗) svn revision number refers to manual.
Check tags for software package.

i

Acknowledgments. Code management for WAVEWATCH III R© is provided by
NCEP. Arun Chawla provided a first filter for this report.

This report is available as a pdf file from

http://polar.ncep.noaa.gov/mmab/notes.shtml

ii

Contents

Abstract . i
Acknowledgments . ii
Table of contents . iii

1 Introduction 1

2 Description of package 3

3 Using the package 9

4 Graphics tools 19

References . 21

A Banana peels A.1

iii

This page is intentionally left blank.

1 Introduction

This report describes a portable package of scripts and fortran programs that
has been designed to work transparently with the WAVEWATCH III R© wave mod-
eling framework (Tolman, 2009, model henceforth denoted as WW3) to perform
the genetic optimization (e.g., Eiben and Smith, 2003) of the Generalized Multiple
DIA (GMD, Tolman, 2010, 2013; Tolman and Grumbine, 2013). In this report,
fonts as used in the WW3 manual are used, with the file, program and directory
names, code and variables in scripts and command lines, and fortran

source code identified by the fonts used here. Familiarity with the WW3 code
and manuals is assumed.

Section 2 describes elements of the packages, and Section 3 describes how to
use this package. Section 4 presents several graphical tools provided with this
package.

1

This page is intentionally left blank.

2

2 Description of package

The genetic optimization package for the GMD assumes an implementation of
the WW3 model in a conventional way, with access to all different wave model
executables through the default search path of the operating system. It should be
noted that the wave model needs to be set up separately for producing either the
baseline conditions to which the GMD is tuned (typically a full solution to the
nonlinear interactions with the !/NL2 switch), or the actual GMD model when
tuning this model, or any other Snl approach to be run for direct comparison.

The optimization package uses three main directories. The first is the main
directory ($genes main) that contains the scripts and files with data necessary
to run the genetic optimization of the GMD. These are isolated in their own
directory for easy maintenance and portability of the package. The second is the
data directory ($genes data) where model data are stored. Such data include
baseline data to which the GMD based model is tuned, generational information
as developed inside the genetic optimization routine, and model results for display
and documentation of model behavior through the optimization procedure. The
third is the work directory ($genes work), which provides temporary storage
used during (test) computations only. Note that most of the optimization work
is performed in the data directories in which the generational data is stored, as
will be illustrated below.

The main package as stored in the $genes main directory consists of several
sets of scripts, programs and files. At the core of the package are the actual test
cases, stored in $genes main/tests:

test 01 Deep water time-limited growth test (single point) with
constants wind speed and direction.

test 0X like test 01 but with much larger minimum source term
time step, used for quick and dirty assessment if GMD
configuration is viable (not to be used in error compu-
tation).

test 02 Deep water fetch-limited growth test with constant wind
speed and direction.

test 03 Deep water ’homogeneous front’ case of Tolman (1992),
Fig. 5.

test 04 Deep water homogeneous rotating wind case.
test 05 Deep water slanting fetch case.
test 06 Like test 01 with background swell field added.
test 11 Time-limited growth is shallow water with reducing depth.
test 12 Wind sea breaking on beach.
test 13 Swell breaking on beach.

For final independent testing of GMD configurations using more realistic con-
ditions, two “real-world” test have been added. These test are used only for

3

comparison, not in the actual optimization.

test hr A synthetic moving hurricane based on mww3 test 05 as
distributed with WW3.

test LM A storm case on Lake Michigan.

Unlike the test used for optimization, the latter two tests require ancillary infor-
mation such as two-dimensional model grids and evolving wind fields. Such data
are stored in the directories

$genes main/tests/test hr.data

and
$genes main/tests/test LM.data .

All test cases run exclusively in the work directory from which the script is called,
and all produce full spectral and source term output for a selected set of locations
and/or times (depending on the actual test). These test are typically not run
independently, but inside a scripting environment. The corresponding scripts
are found in the main directory ($genes main), which also includes setup and
cleanup scripts. The following scripts are found in this directory:

run setup.sh Setup basic system and system shell scripts variables
such as $genes main.

run clean.sh Clean up main and work directories. Optionally clean
up programs and executables directories.

run make.sh Compile or recompile all auxiliary programs. Note that
the user needs to set up the compiler options inside this
script.

run test.sh Run a single test script and put the test results in the
main directory for inspection.

run base.sh Run a set of test as identified in genes.cases.env and store
the test data in $genes data for later use as benchmark
or for model intercomparison.

run comp.sh Process raw data files of a run to produce secondary
data files for display and (optionally) compute errors
against a baseline data set.

run comp.all Run run comp.sh for a set of runs at once.
control.sh General management script for genetic GMD optimiza-

tion.
control.cycle Run control.sh until the optimization is finished, or until

a problem in the optimization has stopped progress (i.e.,
generation of new generations as expected).

control.stop Gracefully shut down control.sh and control.cycle (does
not influence control.cron below).

4

Table 2.1: Setup and environment files used by the genetic optimization al-
gorithm for the GMD. See also Fig. 3.1 for storage locations.

File Location Maintained by Description

.genes.env $home run setup.sh Maintain basic setup
genes.spec.env $genes main User Spectral grid settings
genes.source.env $genes main User Source term settings
genes.snl.env work dir. User/scripts Snl (GMD) settings
genes.cases.env $genes main User Test cases to use
genes.w nnn.env $genes main User Weights for errors

for case test nnn

genes.weights.env $genes main User Default error weights
genes.stats.env $genes main User Stats for opt.
genes.mask.env $genes main User Mask for opt. pars.
genes.expdef.env $genes main control.sh Base setup of exp.
genes.maps.env $genes main User Setup for error mapping
genes.terr.env generation dir. control.sh Set filter error level

descent.sh General management script for steepest descent GMD
optimization, starting from a member of a population
of the genetic optimization.

descent sort.sh Convert quadruplets resulting from descent algorithm
to sorted form.

map it.sh Map error in parameter space by generating a regular
discrete grid of parameters to be optimized.

reset.sh Reset environment parameters and files to those selected
for an existing experiment.

convert hr.sh Auxiliary program to convert GrADS files at NCEP
from big (IBM) to little endian (Linux) format, and to
set up difference fields for hurricane test.

convert LM.sh Idem for Lake Michigan test case.

To assure consistency of model setup across test and run scripts, and to allow
for flexibility of operations within scripts, several setup or environment files are
maintained. These files are kept at different locations and maintained in different
ways, as indicated in Table 2.1.

The main run time scripts described above use utility scripts and fortran

codes for their operation. Utility scripts are gathered in $genes main/ush. Note
that these scripts are not intended to be run independently.

get cases.sh Evaluate the contents of file genes.cases.env.

5

get err test.sh Get combined error for single test case.
get err tot.sh Get combined error for all test cases.
get err par.sh Get combined error per parameter for active test cases.
get terr.sh Get/set filter error level.
make init.sh Generate first population.
make next.sh Make next generation.
run thread.sh Master execution script for a thread in the engine.
run one.sh Sub-script in run thread.sh to get the errors for a single

member of the population.
thread start.sh Start the computational engine for computing errors.
thread stop.sh Stop the computational engine for computing errors.
thread wait.sh Wait for the computational engine to finish.
thread check.sh Background check on health of engine.

These four scripts are kept for different machine se-
tups in the files thread start.sh.$genes engn etc., and are
linked to the above file names in the script control.sh.

make maps.sh Creates population for error mapping..
colorset.gs GrADS color table setup script.
spec.gs GrADS script for plotting of spectra.
source.gs GrADS script for plotting of source terms.
1source.gs GrADS script for plotting of single source term or spec-

trum (including preset copies for various tests).
map hr.gs GrADS script for map plotting for hurricane test.
map LM.gs GrADS script for map plotting for Lake Michigan test.

Note that for most GrADS script links are provided in the main directory for
easy interactive use. Source codes for programs used specifically for this package
are gathered in $genes main/progs, and their executables (replacing file name
extension f90 with x) are stored in $genes main/exe:

constants.f90, w3timemd.f90, w3dispmd.f90, w3arrymd.f90
Service routines from the WW3 code used in the opti-
mization package.

random.f90 Subroutines for random number generation.
cgaussmd.f90 Subroutines for processing normal distributions.
qtoolsmd.f90 Tools for quadruplet processing (subr.).
restart co.f90 Combine two restart files.
process.f90 Process raw data from one or two runs to get a data

set that is readable by, for instance Matlab (single case
use), or get individual error estimates (two case use).

err test.f90 Combine errors per test.
err tot.f90 Get overall error.
err par.f90 Combine errors per parameter for active tests.

6

testerr.f90 Set filter error level based on current population.
reseed.f90 Get a new random seed.
initgen.f90 Set up first generation.
chckgen.f90 Process generation for the purpose of computing and

including errors.
sortgen.f90 Final sorting of generation by error. Also produces the

clean-up population file (sorted quadruplets).
nextgen.f90 Make next generation.
getmember.f90 Extract member information from population file.
descentN.f90 Auxiliary programs for steepest descent optimization.
mapsgen.f90 Make generation for error mapping.

7

This page is intentionally left blank.

8

3 Using the package

The first step of setting up the genetic optimization package is to set up the
underlying wave model, taking into account which physics options the model
GMD is to be tuned to, and selecting Cartesian grid options (!/XYG)1. For this
reference is made to the system manual of WW3 (Tolman, 2009). The second
step is to install the basic package by unpacking the tar file genes.tar. When the
tar file is unpack by executing

tar -xvf genes.tar

a new directory ./genes is automatically generated. This should be the main
directory $genes main in the package. If another directory name is desired, this
directory name needs to be modified before the next step of the initialization. Co-
developers of WW3 can alternatively obtain this directory with its contents from
the subversion repository at NCEP2 The basic setup of the package is finished
by executing

run setup.sh

This will take the user through an interactive process that sets several environ-
mental parameters for the package. This script will set the following shell script
variables:

$genes main Main directory
$genes data Directory where all data are stored, including bench-

mark, and optimization data, as well as validation data
for documenting model behavior.

$genes work Work space for scripts (scratch).
$genes expN Identifiers for the optimization experiment that is worked

on presently. These represents subdirectories under the
work directory (see below).

$genes base Base run identifier used in optimization (typically WRT).
$genes engn Identifier for type of engine used to compute the errors

of a population member. The default is single, which
uses a single threaded engine that can be used anywhere.
Examples of other multi-threaded engines are also pro-
vided (see below).

These variables are stored in the setup file .genes.env (see Table 2.1), which
is used by virtually all executable scripts. The experiment identifiers can be

1 Except for test LM, which requires the !/LLG switch.
2 https://svnemc.ncep.noaa.gov/projects/ww3 utils/trunk/genes gmd or look for tags under

https://svnemc.ncep.noaa.gov/projects/ww3 utils/tags

9

reset by rerunning the setup code. Note that the setup file can also be edited
manually. The next step is to compile all auxiliary programs used by the package
by executing

run make.sh

Note that the user will need to provide the proper compiler commands and set-
tings in the header of this script, before executing it. Note that the corresponding
directories ($genes main/progs and ($genes main/exe) can be cleaned up (listings
and executables removed) by executing

run clean.sh

and answering affirmative to the appropriate questions. The latter script auto-
matically cleans up the main and work directories $genes main and $genes work.
This completes the initial setup of the package. It is now prudent to test some
of the test cases by running the run test.sh script. This script executes a sin-
gle test case and puts output including GrADS data files in the main directory
$genes main. For instance, the first test case is run in this way by executing

run test.sh test 01

Note that run clean.sh should be executed between test runs to assure that the
test starts with a clean environment.

After this initial testing, benchmark or baseline datasets need to be gener-
ated. These data set can be used both in the optimization of the GMD (e.g., the
exact interaction), or to identify progress (e.g., the DIA). Before the benchmark
datasets can be generated, the WW3 model has to be compiled with the appro-
priate switch settings and other options as needed, and the appropriate namelist
options need to be set in the file genes.srce.env. Furthermore, test cases for which
benchmark data needs to be generated need to be identified in genes.cases.env.
The example versions of these files as provided with the package are internally
documented with respect to the data format in the files. After these preparations,
benchmark data is generated by running the command

run base.sh baseID yes

For each test case, a directory $genes data/baseID/test nn is generated, where
the files log.ww3, spec.ww3, srce.ww3, and part.ww3 are stored. These files con-
tain spectral, source term (snl) and partitioned wave data, respectively. The first
command line argument of this script identifies the subdirectory for the base-
line datasets. The second command line parameter is optional, and identifies if
GrADS data sets are to be saved with the general baseline data.

The above commands only generate raw test data, with the exception of the
optional GrADS data that can be used to get a quick look at full two-dimensional

10

spectra F (f, θ) and source terms snl(f, θ). Detailed diagnostics files (all data.ww3
in data directories), specifically for processing with Matlab, can be generated with
the command

run comp.sh test 01 DIA

which processes DIA results for test case test 01. Errors for this case against
WRT results are generated by running

run comp.sh test 01 DIA WRT

which generates an error file errors.test 01.DIA.WRT in the work directory. To
run this script for all tests for a given model setup the command

run comp.all none DIA WRT

can be used, generating raw data files for the DIA and WRT model runs. To
generate errors for WAM and WW3 runs against the WRT runs, this command
is executed as

run comp.all WRT WAM WW3

Note that the run comp.sh or run comp.all scripts together with several Matlab
scripts have been used to generate most of the graphics in Tolman (2010).

This completes the setup of the test environment. The next step is to set up
the GMD model for optimization. Before this is discussed, it is important to
understand the file and directory structure used to perform the optimization
and to save the relevant intermediate and final data. The directory and file
structure is outlined in Fig. 3.1. In the setup steps performed so far, the three
main directories have been defined by running run setup.sh, and can be redefined
by rerunning this script or by manually editing the file .genes.env in the users
home directory. The directories with baseline information (identified here as
WRT, WAM and WW3, actual names set by user) have already been created
and filled by running run base.sh and either run comp.sh or run comp.all. There
are two levels of directories to hold the actual generational, descent and error
mapping data from the optimization approach ($genes epx1 and $genes exp2).
The first is intended to hold all data for a general GMD layout. For instance,
all experiments with a single component GMD with a traditional quadruplet
layout could be saved under a single directory $genes epx1. Several directories
$genes epx2 then can hold experiments for deep versus shallow optimization,
different initial optimization seeds etc. Files identified with ‘(c)’ are kept in the
directory for documentation only, the actual files used by the package are stored
in the main directory $genes main.

The main script controlling the optimization is the script control.sh. This
script is designed to incrementally execute the model optimization, including the

11

$genes data

WRT

WAM Base line data from run base.sh.

WW3
. . .

$genes exp1

$genes exp2

genes.expdef.env Parameters defining exp.

genes.stats.env Statistical info. (c)

genes.mask.env Mask for pars. to optimize. (c)

genes.spec.env Spectral discretization. (c)

genes.source.env Source term options. (c)

genes.cases.env Case selection. (c)

genes.w nn.env Weight arrays. (c)

genes.maps.env Parameters for error mapping. (c)

mapping Population for error mapping.

mapping.test Mapped errors per test.

mapping.pars Mapper errors per par.

genNNNN Directory for generation NNNN.

seed.env Random seed for next generation.

population What it says

pop clean Sorted quadruplets.

errors.test Sorted errors per test.

errors.pars Sorted error per parameter.

descent.n Steepest desc. res. for member n.
. . . Work files and directories depending

on progress of processing, output req.

and hardware setup.

Fig. 3.1 : Layout of directories with data for the GMD optimization. (c)
identifies copy of file with file used stored in $genes main,

12

initial setup for the optimization process. The layout of the script is illustrated
in Fig. 3.2. Running the command

control.sh

will get the optimization procedure started, or will continue it. When starting
a new (part of an) experiment, this script should be run interactively first to
set up the necessary directories and files. If the script is run to start a new
experiment, run setup.sh should be run first to set up the proper data directories.
Furthermore, all environment files marked with ’(c)’ in Fig. 3.1 need to be set up
properly in the main directory $genes main before control.sh is executed for the
first time. Note that if work is to be continued on an existing experiment, the
environment of the experiment can be restored by running

reset.sh $genes exp1 $genes exp2

which resets .genes.env and restores all other environment files as used with the
selected experiment.

After processing the general setup file .genes.env in the users home directory,
the first thing control.sh does is checking the existence of the file genes.expdef.env
(see Fig. 3.1). If this file does not exist, it is generated from interactive informa-
tion provided to control.sh. The setup file sets the following shell script variables:

$genes nq Number of representative quadruplets.
$genes npop0 Size of initial population.
$genes npop Size of subsequent population.
$genes ngen Number of generations to be considered.
$genes seed Initial random seed. Note that the package contains

its own random number generator, making genetic opti-
mization experiments reproducible as long as the same
random seed is used.

After this file is initially generated, it can only be modified by hand. The only
parameter to modify in such a way is the requested number of generations or pos-
sibly the random seed. Modifying the other parameters will result in failure of an
ongoing optimization, and will require the removal of all generational directories
genNNNN.

The second step is to copy in all the environment files as indicated in Fig. 3.1,
or, if these files are already there, to compare them against the corresponding
files in the main directory ($genes main). This step is added to assure that
the experiment is not accidentally continued with modified settings of the GMD
or of the optimization experiment. It also allows for a simple way to redo an
experiment or to expand on an experiment by copying all setup files that are
expected in the main directory (marked with ’(c)’ in Fig. 3.1) back to the main
directory $genes main (see command reset.sh as discussed above).

13

control.sh

Process setup file .genes.env
Test or generate $genes exp1/$genes epx2

Process or generate genes.expdef.env
Copy or test other setup files

If necessary, make first generation (make init.sh)

Check generation, for all members do (chckgen.x)

If error not processed, make file snl.nnnn

with GMD setup for wave model.

For all files snl.nnnn do

Compute error file err.nnnn ‘computational engine’

Check generation, if all errors present do: (chckgen.x)

Sort the population by total error and produce
other population and error files. (sortgen.x)

Start the next generation (make next.sh)

Fig. 3.2 : Structure of the main genetic optimization routine control.sh. The
‘computational engine’ is described in the manuscript.

The next step is to check if the experiment has been started by generating
an initial generation. If this generation is not present, the script make init.sh
using the program initgen.x is used to produce the first generation. This sets up
the initial GMD generation according to information in the setup (*.env file) is
produced, and checks that errors are not yet computed. To indicate the, errors
are initialized at 999.999.

Following this, the program chckgen.x checks the population for cases for
which the error still needs to be evaluated. For each such population member
nnnn, a file with the GMD namelist information is created as the file snl.nnnn.
Computing the corresponding error files err.nnnn represents the main effort of the
optimization procedure, and is performed by the computational ‘engine’ as will
be described below. After all errors have been evaluated, the program chckgen.x
is run again to include the errors from the error files in the population data set
population. Note that in its first call in the script, chckgen.x processes all error files
err.nnnn from previously aborted runs of control.sh, hence avoiding duplication
of work already performed.

If all errors have been computed, the program sortgen.x sorts the population
by ascending error into the file population, and furthermore generates the file
pop clean with the same information but with the quadruplets sorted so that

14

µ ≤ λ and with ascending order for λ per quadruplet. Note that the latter
sorted information is used to eliminate duplicates in the generation of the next
generation. This program also produces the error files errors.pars and errors.test.
Note that the latter files are saved for later analysis, but are not used in the
optimization process and/or control.sh. Finally, the script make next.sh and the
program nextgen.x produce the next population, again with dummy values for
the error for new members of the population.

This ends the description of the script control.sh. This script is not set up
to cycle through consecutive generations. The script is cycled by the additional
command

control.cycle

which sets up genes.expdef.env interactively as needed, and then cycles control.sh
until it works on the same generation for the third time. The latter indicates a
failure in the optimization attempt, or reaching the required number of gener-
ations. Each call of control.sh has its own output file control.nnnn.out for later
inspection. Here nnnn identifies the sequence number of runs of control.sh, not
the generation number. Finally, to cleanly stop the optimization process managed
by control.cycle and control.sh, execute the command

control.stop

which updates information in the file temporary file control.status. This file is
queried by the control.cycle and control.sh to decide keep providing new cases to
the compute engine, and the file is removed as the scripts complete. Note that all
started computations are completed before the scripts stop, so that control.stop
does not result in an immediate stopping of the optimization scripts.

This leaves the description of the computational engine for computing errors for
members of the population. This engine is designed to be able to run a set of
parallel job streams, which are dynamically fed with work to do to optimize load
balancing. At the center of the engine is the utility script run thread.sh. This
script manages a single thread of the computational engine. If the hardware
allows for parallel threads of computation, multiple versions of run thread.sh are
operating simultaneously. How this is achieved depends on the hardware and job
scheduling software used. The starting and stopping of the threads of the engine
is managed by the scripts

thread start.sh Start a number of copies of run thread.sh.
thread stop.sh Stop all copies of run thread.sh .
thread wait.sh Wait for all copies of run thread.sh to stop.
thread check.sh Check health of each copy of run thread.sh.

15

These scripts are actually links to scripts thread start.sh,$genes engn etc., where
$genes engn represents a setup of the computational engine. Options for for the
engine ($genes engn) provided with the package are:

single A single copy of run thread.sh runs in the background
on the present machine.

snits Many copies of run thread.sh on several nodes of a Linux
cluster (snits is Hendrik’s present cluster). Note that
this cluster approach used background runs of the script
through ssh started from an interactive node, and does
not use a batch scheduling system. The system is also
set up to run some processes on the front end of the
cluster if so desired.

IBM ll Running on an IBM supercomputer with LoadLeveler as
a batch processor. control.sh or control.cycle is run inter-
actively, whereas the computational engine is submitted
as a batch job. The size of the engine is presently hard-
wired to 128, and can be reset in the ’total tasks’ job
card in section 1.a of the script thread start.sh.IBM ll.

Moab Running on a Linux cluster with the Moab job sched-
uler, the same way as outlined for the IBM above.

For each copy of run thread.sh with number nn the following files and directories
are maintained in the generation directory:

thread nnn Work directory for this copy of the script.
thread nnn.out Output file for this copy of the script.
tdata.nnn.out File used for communication between control.sh and each

individual copy of run thread.sh that is running.

All these files and directories are removed from the generation directory after all
imputations for that directory have been completed. The file tdata.nnn contains
a single text string. Valid values of this string are

starting Initial string value set by thread start.sh.
ready to go run thread.sh signaling control.sh that it is ready to ac-

cept work.
snl.nnnn control.sh signaling run thread.sh to work on the case as

described by the file snl.nnnn in the work directory.
done control.sh signaling run thread.sh to stop operations and

end its execution.

Finally, run thread.sh uses the utility script run one.sh to compute the errors for
the GMD as described by snl.nnnn.

16

It should be noted that a disproportionally large part of the computational effort
in the genetic optimization is lost for computing test cases with unstable model
behavior. In such cases, the dynamic time step becomes extremely small, and
hence the model run time becomes extremely long. This computational effort is
essentially waisted, because the cases will have large errors and will hence have
no impact on subsequent populations. To eliminate such useless computations,
the error from case test 01 (or test 11 for the shallow water tests) is assessed in
run one.sh. If this error is too big, other test cases are skipped, and the error of
test 01 is used as a proxy for the error of running all tests.

However, even test 01 can take up much computational effort by itself, due to
the small minimum source term integration time step allowed (1 s). To speed up
initial computations for unstable cases, the test case test 0X has been introduced.
This test case is identical to test 01 with the exception that the minimum source
term time step is set to 300 s. This test can give a ‘quick and dirty’ assessment of
the viability of the configuration of the GMD, and will run fast, independent of
the viability of the model configuration. Note that this test is run only to check
viability. If viability is established, test 01 will be used to compute errors for this
configuration, and results of test 0X will be ignored. In some cases the small time
step in test 01 will lead to large model errors whereas test 0X shows much more
moderate errors. Therefore, a second filter test is applied to the errors produced
by test 01.

The filtering is performed in the basic computational script run one.sh, which
is used by all optimization methods (genetic, descent, mapping). The filter levels
are set in the script get terr.sh in the utility script directory. This script set a
minimum and maximum error filter level, and a factor used to set the error filter
level based on the best member of the previous population. If the minimum error
is set to 999.999, no filtering will be performed. The latter setting should be used
if error mapping is performed.

This completes the description of the genetic optimization as performed by con-
trol.sh. As mentioned in Tolman (2010), the genetic optimization can be aug-
mented with a steepest descent method starting from given members of given
populations. This can be achieved by executing

descent.sh igen ipop

where igen represents the generation number, and ipop represents the sequence
number of the member of the sorted population from which the steepest descent
is to start. The resulting sequence of incrementally improved configurations is
stored in descent.igen in the generation directory. The script descent.sh uses
the computational engine designed for control.sh. Result of the steepest descent
search are saved in the generational directory gennnnn with nnnn corresponding
to igen in the file descent.nnnn, where nnnn corresponds to ipop. This file contains

17

a set of incrementally improved GMD layouts, ending with the final optimal GMD
for the chosen initial condition.

descent sort.sh igen ipop

will sort the resulting best configuration from the file descent.igen and store the
results in the file descent sort.igen.

Finally, the tools developed for the genetic search algorithm also make it easy to
develop a simple script to systematically map errors in parameter space. After the
optimization masks are set in genes.mask.env, and information for discretizing the
parameters spaces is set in genes.maps.env, the mapping of errors in the selected
parameter spaces can be performed with the command

map it.sh

This command generates a population mapping representing a preset grid in pa-
rameter space. The script then generates error for each population member using
the computational engine developed for the script control.sh. Note that the pop-
ulation will not be sorted by error per population member. Once all errors are
computed, error files mapping.test and mapping.pars are generated corresponding
to the similar two error files generated by control.sh. Note that the script can be
interrupted, and will take off where it stopped when restarted, as does control.sh.
Note, furthermore, that changing the grid of the parameter space will require a
full rerun of the script. The script could be expanded to incrementally generate
mapping in parameter space, but such an option has not been implemented yet.
Note, finally, that only a single mapping data set is produced per directory setup.

18

4 Graphics tools

Two sets of graphics packages have been used for the production of graphics in
Tolman (2010), and can be used with the optimization package. The first is the
GrADS package, as used as a default graphics option for the WW3 code. Standard
plotting scripts for source terms and spectra for the test cases are described in
the Section 2, and can be found in the directory

$genes main/ush

To use these script, links are generally made to the main directory or a work
directory, and the corresponding GrADS files are copied or linked there from the
storage area $genes data or created there by the script run test.sh.

The second package used is MatlabR©. All Matlab scripts are gathered in he
directory

$genes main/matlab

and Matlab should be run from this directory. Under this directory is a utilities
directory

$genes main/matlab/util

which should be added to the default directory search path for the matlab scripts
to work properly. The utility directory contains the following utility scripts

wavnu2.m Solve the dispersion relation for given frequency σ

and depth d.
read all data.m Read the file all data.ww3 for processing with Mat-

lab.
read mapping.m Read the files with error data form error mapping

scripts.
read pop clean.m Read a population file pop clean.
read descent.m Read the files with error data form error mapping

scripts.

The main directory for Matlab files contains the scripts

makeplots base.m Make line plots for baseline cases from file all data.ww3.
makeplots co 5.m Make line plots for a number of baseline cases

(originally 5) from file all data.ww3.
makeplots maps.m Plot error maps from file mapping and mapping.pars.
makeplots errors.m Plot error evolution as a function of generation.

19

maps extract.sh Auxiliary script to extract mapping data from data
files.

maps clean.sh Auxiliary script to clean up temp files generated
by maps extract .sh.

pop extract.sh Auxiliary script to extract population counts.
pop clean.sh Auxiliary script to clean up temp files generated

by pop extract .sh.

Note that all these (Matlab) scripts require script parameters to be set inside the
scripts that point to the proper data files from the proper model runs. The shell
scripts are used to effectively extract data from data files before reading these
data into Matlab scripts.

20

References

Eiben, A. E. and J. E. Smith, 2003: Introduction to Evolutionary Computing.
Springer, 299 pp.

Tolman, H. L., 1992: Effects of numerics on the physics in a third-generation
wind-wave model. J. Phys. Oceanogr., 22, 1095–1111.

Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH
III TM version 3.14. Tech. Note 276, NOAA/NWS/NCEP/MMAB, 194 pp. +
Appendices.

Tolman, H. L., 2010: Optimum Discrete Interaction Approximations
for wind waves. Part 4: Parameter optimization. Tech. Note 288,
NOAA/NWS/NCEP/MMAB, 175 pp.

Tolman, H. L., 2013: A Generalized Multiple Discrete Interaction Approxima-
tion for resonant four-wave nonlinear interactions in wind wave models with
arbitrary depth. Ocean Mod., Submitted.

Tolman, H. L. and R. W. Grumbine, 2013: Optimization of a Generalized Mul-
tiple Discrete Interaction Approximation for wind waves at arbitrary depth.
Ocean Mod., Submitted.

21

This page is intentionally left blank.

APPENDICES

This page is intentionally left blank.

A Banana peels

This appendix presents some thoughts and considerations that may be helpful,
as well as some traps I have fallen into when using this package.

• When this package was first used in (Tolman, 2010), some of the computa-
tions were done on he ’snits’ Linux cluster, some on the operational IBM
supercomputer of NCEP. To be able to move results easily, big-endian files
were used throughout, with the exception of the GrADS files, which by def-
inition used the local approach (big-endian on IBM, little-endian on Linux),
requiring the use of the convert hr.sh and convert LM.sh scripts. Now that
we are moving to a full Linux environment at NCEP, most work s done
here fully little-endian, without the need for using the convert scripts. Be
careful that the endian approach in the comp and link scripts in WW3, and
in the run make.sh here are set up consistently. Otherwise, file read errors
will occur in the scripts.

• When running an error mapping experiment, filtering of computations using
the error of test 0X and others should not be on. This should be automatic,
as filtering is done through the file genes.terr.env in the generational direc-
tory, set by control.sh.

• When a new experiment is set up, it is critical to make sure that the
genes.expdef.env and genes.mask.env are consistent with respect to the num-
ber of quadruplets defined. There is presently no elegant error capturing if
this is not the case.

A.1

