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Abstract

A generalized Multiple DIA (GMD) for accurate description of nonlin-
ear interactions in wind waves has been developed in a previous phase of
this study (Tolman, 2008b). The present study focuses on the objective op-
timization of the free parameters of the GMD, using genetic optimization
techniques, augmented with more traditional error mapping and steep-
est descent search algorithms. In the so-called holistic optimization, full
wave model results rather than interactions for selected spectra are con-
sidered, using model results obtained with the exact Webb-Resio-Tracy
(WRT) algorithm as reference. The genetic optimization is shown to be
able to optimize more than 20 parameters in the GMD simultaneously,
which would be economically unfeasible with any previously suggested op-
timization technique. A cascade of GMD configurations is presented with
increasing complexity and decreasing error compared to the full exact in-
teraction computations. It is shown that a configuration with five quadru-
plets, each defined with three free parameters, removes most of the (deep
water) model errors associated with the traditional DIA. A model based
on this configuration will require approximately 4 times as much compu-
tational time as the default wave model using the DIA, but is roughly two
orders of magnitude cheaper to run than a model using the WRT approach.
It is shown that the traditional DIA may result in wave height errors as
large as 25% for hurricanes, and 15% for enclosed areas like Lake Michigan,
identifying errors in nonlinear interactions are a potentially significant con-
tributor to overall wave model errors. The present study presents a first
ever attempt to optimize a GMD-type nonlinear interaction approximation
for (extremely) shallow water. It is shown that the GMD indeed can im-
prove shallow water model behavior, but has some minor spurious behavior
in extremely shallow water kd < 0.1. The latter will need to be addressed
before the GMD can be applied to arbitrary water depths in operational
wave models.

i



Acknowledgments. The author thanks Gerbrant Van Vledder for many dis-
cussions during the development of this work, and Arun Chawla and Andre van
der Westhuysen for comments on early drafts of this manuscript. Special thanks
are due to D.B. Rao and Steve Lord of EMC, for their support of this project for
over a decade.

This report is available as a pdf file from

http://polar.ncep.noaa.gov/mmab/notes.shtml

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

2 The wave model 3

3 Holistic optimization 13

3.1 Basic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Test parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Deep water tests . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Shallow water tests . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 General considerations . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Describing the genome . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Initial population . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.4 Subsequent populations . . . . . . . . . . . . . . . . . . . 51
3.5.5 Descent methods . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.6 Mapping of error space . . . . . . . . . . . . . . . . . . . . 55

4 Optimizing the GMD 57

4.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Mapping for a single-component GMD. . . . . . . . . . . . . . . . 58
4.4 Single component GMD . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Deep water . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Shallow water . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Multi-component traditional quadruplet GMD . . . . . . . . . . . 81
4.5.1 Deep water, increasing number of quadruplets . . . . . . . 81
4.5.2 Deep water, sampling of spectral space . . . . . . . . . . . 84
4.5.3 Shallow water, deep water quadruplets . . . . . . . . . . . 91
4.5.4 Shallow water, separate quadruplets . . . . . . . . . . . . . 95
4.5.5 Shallow water, sampling of spectral space . . . . . . . . . . 97
4.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Multi-component expanded quadruplet GMD . . . . . . . . . . . 106
4.6.1 Deep water, increasing number of quadruplets . . . . . . . 108

iii



4.6.2 Shallow water, deep water quadruplets . . . . . . . . . . . 116
4.6.3 Shallow water, separate quadruplets . . . . . . . . . . . . . 117
4.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Practical applications 135

5.1 Moving idealized hurricane . . . . . . . . . . . . . . . . . . . . . . 135
5.2 A storm on Lake Michigan . . . . . . . . . . . . . . . . . . . . . . 149
5.3 Model economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Summary and conclusions 165

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

iv



1 Introduction

This study represents the fourth part of a study into the potential of the Dis-
crete Interaction Approximation (DIA) to represent nonlinear interactions in a
wind wave model. For a justification of this study reference is made to Tol-
man (2003, henceforth denoted as Part 1), Tolman (2005, henceforth denoted as
Part 2), Tolman (2008b, henceforth denoted as Part 3), and to Tolman (2004)
and Tolman and Krasnopolsky (2004). In Part 1 and Tolman (2004), existing
DIA approaches are analyzed, and optimum parameters settings of various DIAs
are assessed using inverse modeling techniques based on individual spectral and
the corresponding exact interactions. In Part 2 and Tolman and Krasnopolsky
(2004), a holistic optimization approaches using genetic optimization techniques
is introduced to better optimize nonlinear interactions in the context of the full
behavior of a numerical wave model. The latter studies indicate the potential
of DIA variations to provide accurate and economical estimates of nonlinear in-
teractions in a practical wave model. In Part 3, a rigorous derivation of DIA
approaches for arbitrary water depth has been developed, and this approach is
numerically optimized and implemented in the WAVEWATCH III r© wave model.

The starting point of the present study is the Generalized Multiple DIA
(GMD) as was developed in Part 3, and as described here in Section 2. No
documentation of previous work will be provided here. For this, see previous
reports in this study. The GMD is optimized here using a holistic optimization
procedure, where results of model integration instead of interactions for individ-
ual spectra are optimized. The optimization procedure is described in Section 3.
Results of various optimization experiments for the GMD are presented in Sec-
tion 4. The most promising approaches are applied to some realistic applications
in Section 5. Finally a brief discussion and conclusions are provided in Section 6.
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2 The wave model

Traditionally, wind wave models have been based on some form of the spectral
wave energy balance equation for deep water of Hasselmann (1960). In such
models the evolution of the wave energy or variance spectrum F (f, θ) as a function
of the spectral frequency f and direction θ can be expressed as

∂F (f, θ)

∂t
+ cg · ∇F (f, θ) = sin(f, θ) + snl(f, θ) + sds(f, θ) , (2.1)

where the right side of the equation represents the sources and sinks, consisting of
wind input (sin), nonlinear interactions (snl) and dissipation (sds) source terms.
Furthermore, cg is the group velocity with magnitude cg = ∂σ/∂k and direction θ,
and where σ = 2πf and k (k) is the wavenumber (vector). Note that formally, F
is a slowly varying function of space and time F (f, θ; x, t). For brevity of notation,
the dependency of F on (x, t) is not expressed explicitly in the present equations.
In shallow water, additional source terms arise, and in cases with mean ambient
currents, wave action rather than wave energy is conserved (Bretherthon and
Garrett, 1968). Modern models, therefore are based on a spectral action balance
equation.

In the present study the WAVEWATCH III model is used for modeling wave
conditions (Tolman, 1991b, 2009b). This model solves the action balance equa-
tion

∂N

∂t
+ ∇x · ẋN +

∂

∂k
k̇N +

∂

∂θ
θ̇N = S , (2.2)

ẋ = cg + U , (2.3)

k̇ = −∂σ

∂d

∂d

∂s
− k · ∂U

∂s
, (2.4)

θ̇ = −1

k

[

∂σ

∂d

∂d

∂m
− k · ∂U

∂m

]

, (2.5)

where N is the action spectrum as a function of the wavenumber k and direction
θ, which is related to the corresponding energy spectrum as

N(k, θ) =
F (k, θ)

σ
, (2.6)

and where σ is the intrinsic frequency (σ = 2πfr). Furthermore, ẋ, k̇ and θ̇ are
the characteristic velocities in physical and spectral space, d is the mean water
depth, U is the mean current (not used in this study), s is a coordinate in the
direction θ and m is a coordinate perpendicular to θ. The parameters describing
spectral space are related in a dispersion and a Doppler relation

σ2 = gk tanh kd , (2.7)

3



ω = σ + k · U . (2.8)

The spectra described as a function of frequency or wavenumber are related
through a Jacobian transformation

F (fr, θ) =
∂k

∂fr

F (k, θ) =
2π

cg

F (k, θ) . (2.9)

Several options are available for the source terms S on the right side of Eq. (2.2).
As used in this study

S = Sin + Snl + Sds + Sbt + Sdb , (2.10)

where Sin = sin/σ, etc. Note that transition to other spectral domains will require
a Jacobian transformation as in Eq. (2.9). Input and dissipation (whitecapping)
are modeled using Tolman and Chalikov (1996), bottom friction (Sbt) is modeled
using Hasselmann et al. (1973), and depth limited breaking is modeled using
Battjes and Janssen (1978). See Tolman (2009b) for details and default model
settings as used here. Various versions of the nonlinear interactions are used as
described below.

The nonlinear interactions considered here describe the resonant exchange
of energy, momentum and action between a “quadruplet” of four spectral com-
ponents with wavenumber vectors k1 through k4 and (radian) frequencies σ1

through σ4, satisfying the following resonance conditions (Hasselmann, 1962,
1963) :

k1 + k2 = k3 + k4 , (2.11)

σ1 + σ2 = σ3 + σ4 . (2.12)

The interactions are conventionally expressed in terms of the rate of change of
the action spectrum n(k) ≡ F (k)/σ as

∂n1

∂t
=

∫ ∫ ∫

G (k1, k2, k3, k4) δk δσ

× [n1n2 (n3 + n4) − n3n4 (n1 + n2)] dk2 dk3 dk4 , (2.13)

where ni is the action density at component i, ni = n(ki), G is a complex coupling
coefficient (Webb, 1978; Herterich and Hasselmann, 1980), and δk and δσ are
delta functions corresponding to the resonance conditions (2.11) and (2.12). This
‘exact’ approach represents the baseline for optimizing the GMD. In this study
the Webb-Resio-Tracy (WRT) (Webb, 1978; Tracy and Resio, 1982; Resio and
Perrie, 1991) method is used for computing the exact interactions. Calculations
are performed with the portable package developed by Van Vledder (2002, 2006)1.

1 Model version 5.04 used here.
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Whereas the benchmark is provided by the WRT method, errors of the GMD
are relevant with respect to previous approximations to the exact computations.
The previous standard is the Discrete Interaction Approximation (DIA) of Has-
selmann et al. (1985). This approach simplifies the computations of the interac-
tions in two main ways. First, only a single resonant quadruplet configuration is
considered, satisfying Eqs. (2.11), (2.12) and

k1 = k2

σ3 = (1 + λ)σ
σ4 = (1 − λ)σ







, (2.14)

where λ is a constant, typically set to λ = 0.25. Second, a discrete equivalent to
Eq. (2.13) for the spectrum F (f, θ) is developed, where discrete contributions to
the source term δsnl,i for the four quadruplet components are computed as





δsnl,1

δsnl,3

δsnl,4



 = D





−2
1
1



Cg−4f 11
r,1 ×

[

F 2
1

(

F3

(1 + λ)4
+

F4

(1 − λ)4

)

− 2F1F3F4

(1 − λ2)4

]

, (2.15)

where Fi = F (fr,i, θi), and δsnl,1 = δsnl(fr,i, θi), and C is a proportionality con-
stant. In WAVEWATCH III, the default setting is C = 1.00 107. Finally, D is a
scaling function to account for effects of limited water depths (Hasselmann and
Hasselmann, 1985)

D = 1 +
5.5

k̄d

[

1 − 5

6
k̄d

]

e−1.25k̄d . (2.16)

where k̄d is the mean relative water depth. Note that Eq. (2.15) implies a loga-
rithmic frequency grid

σi+1 = Xσ σi , (2.17)

where Xσ is the discrete frequency increment factor and i is the discrete frequency
grid counter.

To compute the nonlinear interactions according to the DIA, discrete contri-
butions δsnl,i are computed for a quadruplet with k1 coinciding with each discrete
spectral grid point in turn (extending the grid to higher frequencies), after which
all discrete contributions are combined to get the total nonlinear interactions.
Note that the evaluation of Fi in Eq. (2.15) requires interpolation in spectral
space, and that δsnl,i needs to be distributed over adjacent discrete spectra grid
points. Note, finally, that deep water is assumed in all computations for the DIA,
except for the evaluation of D.
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Table 2.1: One two or three parameter definitions of the representative
quadruplet from Part 2. kd represents the discrete spectral grid point
for which the discrete interaction contributions are evaluated. ∗) ∆θ
implicit in definition of quadruplet.

kd σ ∆θ a1 a2 a3 a4

(λ) k1 σ1 0 1 1 1 + λ 1 − λ
(λ, µ) 1

2
(k1 + k2)

1
2
(σ1 + σ2)

∗) 1 + µ 1 − µ 1 + λ 1 − λ
(λ, µ, ∆θ) Eq. (2.19) σ1 ∆θ 1 + µ 1 − µ 1 + λ 1 − λ

The present study aims to optimize the parameter settings of the Generalized
Multiple DIA (GMD) as developed in Part 3. This approach expands upon
the traditional DIA in several ways. First, it is expressed directly in terms of
the action spectrum N(k, θ) as used in WAVEWATCH III. Note that this has
some impact on interpolations in spectral space in the computation of discrete
interactions, which in turn has a notable impact on the resulting interactions
(see Part 3 and below). Second, the definition of the representative quadruplet
is expanded, to become a one, two or three parameter definition, where

σ1 = a1σ
σ2 = a2σ
σ3 = a3σ
σ4 = a4σ
θ2 = θ1 ± ∆θ























, (2.18)

The definitions of ai depend on the relation of the quadruple components to the
discrete wavenumbers kd of spectral grid point for which the discrete interactions
are evaluated, and are given in Table 2.1. For the three-parameter definition of
the quadruplet,

kd =
||k1||

||k1 + k2||
(k1 + k2) . (2.19)

Note that, unlike in the traditional DIA, the quadruplet layout is evaluated for
the actual depth for each discrete spectral grid point.

Third, multiple representative quadruplets are used. Interactions for individ-
ual quadruplets are added, and normalized with the number of representative
quadruplet definitions. Fourth, the discrete interactions are reformulated to be
expressed in terms of discrete contributions δSnl(k, θ) corresponding to the basic
spectrum N(k, θ) as used in Eq. (2.2), and is properly scaled for arbitrary water
depths. This results in the following discrete contributions to Snl
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δSnl,1

δSnl,2

δSnl,3

δSnl,4









=









−1
−1

1
1









(

1

nq,d

CdBd +
1

nq,s

CsBs

)

×
[

N1

k1

N2

k2

(

N3

k3

+
N4

k4

)

− N3

k3

N4

k4

(

N1

k1

+
N2

k2

)]

, (2.20)

where nq,d and nq,s represent the number of deep and shallow water quadru-
plet definition used (representing the above rescaling for multiple representative
quadruplets), and where Bd and Bs represent the asymptotic deep and shallow
water scaling functions

Bd =
k4+m σ12−2m

(2π)9 g4−m cg
, (2.21)

Bs =
g2 k10

(2π)9 cg
(kd)n , (2.22)

where m and n are free parameters to be optimized. Finally, Cd and Cs are
proportionality constants for the two scaling functions, corresponding to the pro-
portionality constant C in the DIA [Eq. (2.15)]. Note that Eq. (2.21) differs from
Eq. (2.107) in Part 3 by a factor of (2π)3, to ensure that equations reduce to the
original DIA equations for deep water.

In the numerical integration of the source terms in WAVEWATCH III, the
diagonal terms of the partial derivatives of the source term with respect to the
spectrum ∂Snl,i(k, θ)/∂Ni(k, θ) ≡ Di(k, θ) are needed. The discrete increment of
the spectrum ∆Ni(k, θ) is calculated as

∆Ni(k, θ) =
Si(k, θ)∆t

1 − αDi(k, θ)∆t
, (2.23)

where α = 1 determines the centricity of the scheme. The diagonal term D
follows from Eq. (2.20) as









δD1

δD2

δD3

δD4









=









−K ′
1

−K ′
2

K ′
3

K ′
4









(

1

nq,d
CdBd +

1

nq,s
CsBs

)

, (2.24)

where

K ′
1 = k−1

1

[

N2

k2

(

N3

k3

+
N4

k4

)

− N3N4

k3k4

]

, (2.25)

7



K ′
2 = k−1

2

[

N1

k1

(

N3

k3

+
N4

k4

)

− N3N4

k3k4

]

, (2.26)

K ′
3 = k−1

3

[

N1N2

k1k2

− N4

k4

(

N1

k1

+
N2

k2

)]

, (2.27)

K ′
4 = k−1

4

[

N1N2

k1k2

− N3

k3

(

N1

k1

+
N2

k2

)]

, (2.28)

In Fig. 5.1 of Part 3 it is shown that the choice of the spectral description can
have a significant impact on the resulting nonlinear interactions. In particular,
expressing the interaction in terms of N(k, θ) instead of F (f, θ) results in clear
differences in resulting interactions, and in clearly different model integration
(see Part 3, Figs. 5.9 and 5.10). Originally, the GMD is expressed in terms of
the internal spectrum N(k, θ) of WAVEWATCH III. Here, we will also consider
the more conventional description in terms of the energy spectrum F (f, θ) from
the original DIA, to address possible impact on the potential of the optimization.
The energy spectrum F (f, θ) follows from the action spectrum N(k, θ) as

F (f, θ) =
2πσ

cg

N(k, θ) , (2.29)

where cg = ∂σ/∂k is the group velocity of the spectral component following from
the dispersion relation (2.7). For this spectrum, the contributions δsnl(fi, θi) =
δsnl,i to the nonlinear interactions snl(f, θ) for F (, f, θ) become









δsnl,1

δsnl,2

δsnl,3

δsnl,4









=









−1
−1

1
1









(

1

nq,d
CdBd +

1

nq,s
CsBs

)

×
[

cg,1F1

k1σ1

cg,2F2

k2σ2

(

cg,3F3

k3σ3

+
cg,4F4

k4σ4

)

− cg,3F3

k3σ3

cg,4F4

k4σ4

(

cg,1F1

k1σ1

+
cg,2F2

k2σ2

) ]

, (2.30)

where

Bd =
k4+mσ13−2m

(2π)11 g4−m c2
g

, (2.31)

Bs =
g2 k11

(2π)11 cg
(kd)n , (2.32)
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Note that in the traditional DIA, Fi in Eq, (2.30) are obtained by bi-linear in-
terpolation in the discrete spectral space, whereas the terms [cg(kσ)−1]i are com-
puted for the actual components of the quadruplet. In Eq. (2.20), the latter
terms are effectively obtained by linear interpolation from the discrete spectral
space. Therefore, in order to retain the original DIA results, interpolation should
be performed on F rather than Fcg(kσ)−1, and cg(kσ)−1 should be evaluated
at the quadruplet components rather than at the discrete spectral grid points.
The diagonal terms for this source term description are computed according to
Eq. (2.24) with

K ′
1 =

cg,1

k1σ1

[

cg,2F2

k2σ2

(

cg,3F3

k3σ3

+
cg,4F4

k4σ4

)

− cg,3F3

k3σ3

cg,4F4

k4σ4

]

, (2.33)

K ′
2 =

cg,2

k2σ2

[

cg,1F1

k1σ1

(

cg,3F3

k3σ3

+
cg,4F4

k4σ4

)

− cg,3F3

k3σ3

cg,4F4

k4σ4

]

, (2.34)

K ′
3 =

cg,3

k3σ3

[

cg,1F1

k1σ1

cg,2F2

k2σ2

− cg,4F4

k4σ4

(

cg,1F1

k1σ1

+
cg,2F2

k2σ2

)]

, (2.35)

K ′
4 =

cg,4

k4σ4

[

cg,1F1

k1σ1

cg,2F2

k2σ2

− cg,3F3

k3σ3

(

cg,1F1

k1σ1

+
cg,2F2

k2σ2

)]

, (2.36)

Note that the diagonal terms are identical for both spectral descriptions, since
the Jacobian transformations for the spectrum and source terms are identical and
hence cancel in the derivatives.

The impact of the choice of the spectral description and interpolation is illus-
trated in Fig. 2.1. Figures 2.1a and b are taken directly from Part 3, and show
the differences in the interactions between the traditional DIA and the GMD
where N(k, θ)/k is interpolated in the discrete spectral space. Figure 2.1c shows
results where N(k, θ) is interpolated and the corresponding factor 1/k is eval-
uated at the actual quadruplet. The differences between the latter two panels
are minimal. Finally, panel (d) shows the GMD using Eq. (2.30) with F (f, θ)
interpolated in spectral space and cg(kσ)−1 evaluated at the quadruplet. The
interactions according to this GMD are virtually identical to those of the tradi-
tional DIA (panel a), clearly illustrating the large impact of the choice of spectral
interpolation versus evaluation of quadruplets on the resulting nonlinear interac-
tions. Note that the change back to a description of the interactions in terms of
the spectrum F (f, θ) has virtually no impact on the numerical optimization con-
siderations in Section 5.1 of Part 3. Note, furthermore, that the GMD based on
Eqs. (2.30) through (2.36) results in model integrations with virtually identical
results when compared to the DIA. By contrast, figures (5.9) and (5.10) in Part
3 show that the DIA and the original GMD resulted in very different wave con-
ditions (Hs = 2.92m and 2.43m, respectively). With the alternative formulation
of the GMD of Eqs. (2.30) through (2.36), model integration for deep water is
now virtually identical to that of the DIA (Hs = 2.91m).
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Fig. 2.1 : Like Fig. 5.1 from Part 3. (a) Traditional DIA, (b-d) GMD with
parameter settings from traditional DIA. (b) N(k, θ)/k in product term
interpolated in spectral space. (c) Idem N(k, θ). (d) Idem F (f, θ). (a,b)
from Part 3
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Initial comparisons of the two GMD approaches with respect to potential of
model optimization are presented in Tolman (2009a), where it is shown that the
GMD based on the F (f) spectral description is far superior to the GMD based
on N(k). The latter approach results in model errors that are typically twice
as large as those of the former approach. Furthermore, the latter GMD is hard
pressed even to outperform the traditional DIA. Considering this, only the GMD
based on the F (f) spectrum [Eqs. (2.30) - (2.36)] will be used in the remainder
of this report.

Part 3 also introduced a filter function for high frequencies in the spectrum based
on the nonlinear interactions, and similar to a diffusion term. This term is based
on the traditional quadruplet layout of the DIA, with λ chosen small enough not
to be resolved by the discrete spectral grid. With the spectral grid given by Eq.
(2.17), and defining a34 as the offset in the discrete grid of quadruplet components
3 and 4 in the frequency space, normalized with the frequency increment, a34, λ
and the frequency increment factor Xσ are related as

a34 =
λ

Xσ − 1
, (2.37)

and the quadruplet is not resolved by the discrete spectral grid if a34 < 1. In the
present implementation of this filter in WAVEWATCH III, the default setting is
a34 = 0.05, with a requirement that a34 ≤ 0.25. For the corresponding value of
λ and using the one-parameter definition of the quadruplet layout, a normalized
discrete change of action density for the two possible realizations of the quadruplet
at the central point of the quadruplet ∆Ñ1,2 is computed as

∆Ñ1,2 = −Mc Φ(f) C
k8 σ4

(2π)9 cg

P1234 ∆t N−1 , (2.38)

where the product term is taken from Eq. (2.20), Mc represents the cumulative
interpolation factors of all quadruplet components inside the nine point stencil
from Part 3, C is the conventional proportionality constant, ∆t is the numerical
time step and N represents the action density at the discrete grid point consid-
ered. Φ(f) is a filter function introduced to apply these changes only for high
frequencies

Φ(f) = exp

[

−c1

(

f

c2fp

)−c3
]

, (2.39)

with c1 through c3 as tunable parameters, in addition to a34 and C. Consistent
with a diffusion-based filter, the normalized change is limited to a maximum
change ∆Ñmax, distributed over the two quadruplet contributions as
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∆Ñm,1 =
|∆Ñ1|∆Ñmax Φ(f)

|∆Ñ1| + |∆Ñ2|
, ∆Ñm,2 =

|∆Ñ2|∆Ñmax Φ(f)

|∆Ñ1| + |∆Ñ2|
. (2.40)

and the discrete changes of action density are limited as

−∆Ñm,1 ≤ ∆Ñc,1 ≤ ∆Ñm,1 , −∆Ñm,2 ≤ ∆Ñc,2 ≤ ∆Ñm,2 (2.41)

The maximum allowed change corresponds to the Peclet number. Practical values
of ∆Ñmax ≈ 0.25 are used. Note that the above arguments only consider the rate
of change in the quadruplet at the center bin in the discrete grid stencil, but that
in practice, the quadruplet contributions to all relevant discrete spectral grid
points are considered. Using the full implementation of this filter, an effective
Snl,e source term can be defined as

Snl,e = (Nf − N) ∆t−1 , (2.42)

where Nf is the spectrum after filtering, and N is the original spectrum.

This additional filter has not been used in the optimization study, but was found
to be beneficial both qualitatively and quantitatively when added to selected
optimized GMD configurations as will be shown in Section 4.6.
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3 Holistic optimization

3.1 Basic approach

The traditional approach to optimizing parameterizations of Snl is to optimize
the interactions for given spectra to optimally represent the corresponding exact
interactions (e.g., WRT). Such an approach was used in Part 1 and in Tolman
(2004). However, it was also shown that a better fit for interactions for individual
spectra does not necessarily result in better model results. In fact, a DIA with a
single representative quadruplet using the new two-parameter quadruplet defini-
tion significantly improved the description of individual interactions, but resulted
in unstable model integration with spurious two-peaked spectra. This behavior,
where better individual interactions do not result in better model integration is
attributed to the strong nonlinearity of the interactions.

The above behavior implies that interactions should be optimized in such a
way that full model behavior instead of interactions for selected spectra are op-
timized. Such a ‘holistic’ optimization procedure was introduced in Part 2 and
in Tolman and Krasnopolsky (2004). With this approach, an optimized DIA
with multiple representative quadruplets and an extended quadruplet definition
(MDIA) was indeed shown to represent model integration based on the WRT
method much better than a model based on the traditional DIA. A second issue
is the optimization procedure applied. For an MDIA with a small number of
free parameters, the optimization can be performed by brute force mapping of all
model errors in parameter space (Part 2), but for larger numbers of free param-
eters this is not economically feasible. For such a case, a genetic optimization
algorithm was designed to effectively find optimal parameter settings in a multi-
dimensional parameter space with multiple local minima for errors (Appendix B
of Part 2 and Tolman and Krasnopolsky, 2004).

The optimization procedure contains several elements. A set of representative
test cases needs to be designed for which the GMD is to be optimized. From these
test cases, test parameters and metrics need to be defined to quantify how well
a realization of the GMD performs. With this, a genetic optimization procedure
can be designed. Before test cases are discussed in Section 3.3, test parameters
are discussed in Section 3.2. After this, metrics are discussed in in Section 3.4.
Finally, the general design of the genetic algorithm is discussed in Section 3.5.
Note that strategies for the actual genetic optimization are deferred to Section 4.

3.2 Test parameters

All tests as described in the following section produce a set of spectra at various
times and or locations. These spectra are the basis of test parameters and metrics
in the optimization procedure. Inside the wave model the action density spectrum
as a function of wavenumber and direction N(k, θ) is used. However, the output
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of the model is the more generally used energy2 density spectrum as a function
of frequency and direction F (f, θ). The conversion between the spectra follows
directly from the definition of the spectra and the Jacobian corresponding to the
conversion of spectral space as in Eq. (2.29). Because these spectra contain the
full description of the sea state in the model, one could simply define the metric
of an optimization algorithm as some direct error measure of the entire two-
dimensional spectrum. However, this does not acknowledge that some features
of the spectrum may be important, and should be explicitly accounted for in the
optimization (as was done in Part 2). For instance, the full spectrum generally
contains too much information for practical wave forecasting problems, and hence
is generally reduced to one or more mean descriptive parameters of the spectrum
such as a representative wave height. For forecast practices, it then makes sense
that the wave height error is minimized explicitly. For this reason, error measures
considered in Part 2 were based on the wave height, the one- and two-dimensional
spectrum, and the one- and two-dimensional steepness spectrum (G = k2F ). In
this study a much broader range of spectral parameters is considered in the
optimization and validation of the GMD.

The obvious first mean wave parameter to be considered is the total energy
(variance) E or the significant wave height Hs,

Hs = 4
√

m0 , E = m0 =

∫∫

F (f, θ) df dθ , (3.1)

where m0 is the zeroth moment of the spectrum. Traditionally, the significant
wave height Hs has the most direct implication for safety at sea and is therefore
the preferred of these two parameters to address. The next step is to identify some
representative measure for the wave period (or length) and the wave direction.
For wave period measures, a choice can be made between a peak period based
on the spectral shape, or a mean period based on spectral moments. The peak
period in WAVEWATCH III is traditionally estimated from the one-dimensional
wave energy spectrum

F (f) =

∫

F (f, θ) dθ . (3.2)

To obtain a continuous estimate of the peak frequency (fp) or the corresponding
peak period (Tp = f−1

p ) from the discrete frequency spectrum F (f), a parabolic
fit is made to the shape of the peak of the spectrum. Mean periods or frequencies
are generally obtained from moments of the spectrum

mi =

∫∫

f i F (f, θ) df dθ , (3.3)

2 Formally wave variance rather than energy, but this nomenclature is used throughout wind
wave literature.
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or similar moments based on the period T = f−1. Several definitions of mean
frequencies or periods from the first or second spectral moments m1 and m2 can
be defined. Using peak or mean measures both has advantages. The peak fre-
quency assesses if the dominant feature of the spectrum is ‘in the right place’,
but assessment is less straightforward in multi-peaked spectra. Mean measures
tend to focus more on the details of the spectrum at higher frequencies, par-
ticularly if higher spectral moments are used. Considering previous issues with
the shape of the peak of the spectrum in WAVEWATCH III (see Tolman and
Krasnopolsky, 2004, Fig. 4b), and because details of the shape of the spectrum at
high frequencies will be addressed with separate parameters below, the present
study will focus on the peak frequency and period. Note that the new parti-
tioning algorithm based on the Vincent and Soille (1991) algorithm is available
in WAVEWATCH III (Hanson and Jensen, 2004; Hanson et al., 2006; Tolman,
2009b). This algorithm allows for a direct assessment of mean wave parameters
of individual wave fields in a multimodal wave field.

Mean directions θ1,2 are typically obtained from the directional Fourier com-
ponents of the spectrum

θ1,2 = atan

(

b

a

)

, (3.4)

a =

∫ 2π

0

∫ f2

f1

cos(θ)F (σ, θ) dσ dθ , (3.5)

b =

∫ 2π

0

∫ f2

f1

sin(θ)F (σ, θ) dσ dθ . (3.6)

By integrating over the entire frequency space ([f1, f2] = [0,∞]) the total mean
direction θ is obtained, whereas the mean direction at the spectral peak θp is
obtained by integrating over the discrete spectral band around the discrete peak
frequency fp,i only ([f1, f2] = [fp,i ± 0.5∆fp,i). Together with the mean direction,
a mean directional spread σθ,1,2 can be defined from the Fourier components as
(Kuik et al., 1988)

σθ,1,2 =

[

2

{

1 −
(

a2 + b2

E2

)1/2
}]1/2

, (3.7)

which can also be applied to the entire spectrum or to selected frequency ranges
based on the choice of f1,2. Due to the pronounced asymmetric behavior of the
spectral shape in frequency space, mean spread parameters of spectral energy in
frequency space are not commonly used.

The next level of detail is obtained when one-dimensional spectral descrip-
tions are addressed. Conventional one-dimensional spectral measures are the
one-dimensional spectrum F (f) from Eq. (3.2), and the spectral mean directions
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θ(f) and directional spread σθ(f) obtained by applying Eqs. (3.4) through (3.7)
for each discrete spectral frequency band individually. Apart from these spectral
measure the steepness spectrum G(f),

G(f) = k2 F (f) (3.8)

provides additional insight in the behavior of the spectrum by focusing more on
the high-frequency part of the spectrum.

More detailed behavior of the one-dimensional spectrum to be tested (and
later optimized) are the energy level of the parametric tail, the energy level in
the transition from the spectral peak to the parametric tail, and the best fit
spectral slope in the latter area. The first of these parameters (α, Phillips, 1958)
is computed as

α = (2π)4g−2 F (f) f 5 , (3.9)

which in the parametric tail by definition is constant, and can therefore be as-
sessed locally, typically at the highest discrete frequency in the spectral grid. The
second and third parameter assess the expectation that this part of the spectrum
follows an f−4 functional behavior, or that the steepness spectrum k2 F (f) is
constant in this range. Since this is a dynamic range of the spectrum, the level
of this part of the spectrum is easily assessed by directly assessing the steepness
spectrum. The functional behavior requires an optimal fit estimate of the slope
factor m in f−m. Alternately, the fit to the exact steepness spectrum in this
frequency range can be addressed directly.

Finally, the full two-dimensional spectrum remains obviously relevant, as is
the two-dimensional steepness spectrum

G(f, θ) = k2 F (f, θ) (3.10)

This generally covers the holistic model behavior. However, even if the focus
is on the holistic model behavior, an accurate instantaneous description of the
nonlinear interactions remains a desirable feature of a wave model. Therefore,
the actual interactions obtained from the test cases also need to be addressed.
Apart from the full interactions snl(f, θ), it is worth while to address the one-
dimensional interactions

snl(f) =

∫

snl(f, θ) dθ , (3.11)

which identifies some of the critical features of the interaction, in particular the
redistribution of wave energy over frequencies. From the one-dimensional inter-
action, an energy flux in frequency space M can be identified as

M(f) =

∫ f

0

snl(fi) dfi . (3.12)
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This flux can be interpreted as the nonlinear energy flux to lower frequencies
passing the frequency f . Whereas the interactions snl(f) typically have a three-
lobed structure, the flux M has a two-lobed structure, with, by definition M(0) =
M(∞) = 0. This implies that there exists a third frequency where M = 0. This
so-called zero-frequency f0 for which M(f0) = 0 is important, as it forms a natural
separation between low and high frequencies across which nonlinear interactions
have no nett impact.

This completes the description of parameters used to asses model behavior in
test cases, and to be the basis of optimization metrics in the present study. Error
metrics based on these parameters will be defined in Section 3.4.

3.3 Test cases

For the holistic optimization test cases need to be designed, representing realistic
an relevant wave model behavior. Considering the importance of nonlinear in-
teractions in terms of wave growth, most if not all tests will consider conditions
with active wave growth. As mentioned in Section 1 the WAVEWATCH III model
with its default settings is used here. The following additional considerations were
made when setting up the test cases.

i) To avoid that the spectral and physical grid directions coincide (en-
hancing numerical directional anisotropy), the first discrete spectral
direction is offset by 0.5∆θ. Note that this wave model option was not
available in Part 2.

ii) To ensure sufficient resolution for the WRT computations, the spectral
grid consists of 36 directions (∆θ = 10◦) and the frequency increment
factor of Eq. (2.17) is set to X = 1.07.

iii) The WRT computations are known to be somewhat sensitive to the ex-
tend of the discrete grid in high frequencies. To ensure accurate WRT
computations, a frequency grid ranging from 0.040 Hz to 0.785 Hz with
45 frequencies is used, and for each computation initial conditions are
chosen such that the dynamic cut-off frequency between the prognos-
tic part of the spectrum and the diagnostic tail is always well within
the discrete spectral range. Typically, initial conditions consists of a
JONSWAP spectrum (Hasselmann et al., 1973) with a peak frequency
fp = 0.25 Hz.

iv) For maximum consistency with operational model behavior, the third-
order propagation scheme using averaging to alleviate the Garden Sprin-
kler Effect is used. Note that in Part 2 a first order scheme was used
to more rapidly achieve stationary conditions in idealized test cases.
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v) All spatial propagation tests are performed in Cartesian rather than
spherical space.

Note that these model settings are either controlled by the user when compiling
the wave model, or are set up centrally for all test cases with a shared environment
file (see Tolman, 2010).

In Part 2 only two deep water test cases where considered. In the present
study, the number of test cases is expanded dramatically, both to cover addi-
tional (deep water) wave growth situations, and to add shallow water conditions.
Even now, a major focus is still on deep water wave growth. The correspond-
ing test cases are presented in Section 3.3.1. Additional shallow water tests are
described in Section 3.3.2. Finally, some tests are performed to illustrate model
behavior after the optimization has been completed. Such tests will be described
in Section 5. Additional information on executing test cases can be found in
Tolman (2010). Test names correspond to their script names in the test package
and identified here with the file font.

3.3.1 Deep water tests

The deep water tests all consider wave growth. They can broadly be divided in
several categories

1) Traditional time- and fetch-limited growth curve computations for con-
stant (offshore) wind speed (test 01 and test 02). These are the tra-
ditional idealized test conditions considered in numerous studies, and
these tests were the only two tests used in Part 2.

2) Conditions with turning winds or waves that are not aligned with the
wind. Considered are a time-limited case representing a frontal passage
(from Tolman, 1992), a time-limited case with a constantly turning
wind, and a so-called ‘slanting fetch’ case with a uniform wind blowing
offshore under an angle with a straight coast. (test 03 through test 05).

3) A case with wave growth in the presence of swell. (test 06).

The test cases will be discussed in some detail below. The wave model behavior
in all test cases will be illustrated using the parameters as defined in the previ-
ous section. To illustrate the importance of the nonlinear interactions, and the
potential improvement to be achieved by the optimizations of the GMD, results
from the exact (WRT) interactions and the conventional DIA will be presented
side-by-side. Tested are the default WAVEWATCH III settings with λ = 0.25
and C = 1 × 107 (henceforth denoted as WW3), and the traditional WAM set-
tings from WAMDIG (1988) with λ = 0.25 and C = 3× 107, henceforth denoted
as WAM3.

3 Note: this identifies WAM DIA settings in WAVEWATCH III, not the full WAM model.
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Fig. 3.1 : Evolution in time of a) significant wave height Hs, b) peak fre-
quency fp, c) mean direction θ, and d) directional spread σθ for the
time-limited growth test test 01. Solid line: WRT. Dashed line: WW3.
Dotted line: WAM. Chain line: wind direction (in this figure, wind and
wave direction are identical).

Test case test 01 considers a conventional time-limited growth situation in oth-
erwise homogeneous conditions. The model consists of one grid point, and all
wave propagation is switched off to represent homogeneous conditions. The wind
speed is set to U10 = 20 ms−1, and computations are performed for 48 h. Test
data are saved every hour, excluding the initial conditions. This results in 48 sets
of test spectra etc. for this test case.

Figure 3.1 shows mean wave parameters resulting from this test for the ex-
act WRT method (solid lines) and the DIA approximations (WW3 dashed lines,
WAM dotted lines). Wave heights (panel a) of the WW3 approximation are
close to the exact (WRT) results, whereas results from the WAM approach are
systematically low. Conversely, the WAM approach reproduces WRT peak fre-
quencies closer than the WW3 approach (panel b). This test lines up wind and
wave directions naturally, and hence no differences are found in the mean direc-
tion (panel c). Finally, directional spread of both the WAM and WW3 approach
overestimate the exact WRT results (Fig. 3.1d).
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Fig. 3.2 : One-dimensional spectral quantities after 12 h of model integra-
tion corresponding to Fig. 3.1. a) energy spectrum F (f), b) steepness
spectrum G(f), c) mean direction θ(f), d) directional spread σθ(f), e)
nonlinear interactions snl(f), f) nonlinear energy flux M(f), Legend as
in Fig. 3.1. All variables normalized with the absolute maximum of the
WRT results.

Figure 3.2 shows one-dimensional spectral parameters after 12 h of model
integration for this test. These results are representative for the entire model
integration. The results for the spectrum F (f) (Fig. 3.2a) indicate that neither
the WW3 nor the WAM approach accurately described the sharp spectral peak.
The differences in shape for the WW3 and WAM approaches indicate why the
former gives a better representation of the wave height Hs, whereas the latter
represents the peak frequency fp better. The steepness spectrum G(f) (panel
b) furthermore indicates that neither the WW3 nor the WAM approach describe
the constant steepness range for intermediate frequencies particularly well, and
that the WAM approach underestimates the energy level at high frequencies α
whereas the WW3 approach overestimates it. Due to the setup of the test, the
spectral direction θ(f) (panel c) provides no information. The directional spread
σ(f) is fairly similar between the three approaches, with some overestimation by
the WAM approach. The nonlinear interactions (panel e) according to the WW3
and WAM approaches are not as sharply defined as in the exact approach, but
corresponding fluxes (panel f) result in fairly similar zero-flux frequencies f0.

Figures 3.3 and 3.4 show the corresponding two-dimensional spectra F (f, θ)
and source terms snl(f, θ). The results of the exact approach are generally sharper
and more detailed. Note that the interactions are surprisingly similar, considering
the large differences found in previous parts of this study. This can be attributed
to the dynamic response of the model, where small changes in spectral shape
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Fig. 3.3 : Two-dimensional energy spectral F (f, θ) from exact WRT compu-
tations (left) and WW3 (center) and WAM DIA approximation (right)
corresponding to Fig. 3.1 after 12 h of model integration. Logarithmic
scaling with factor 2 between contours and lowest contour at 0.25 m2s.
Frequencies ranging from 0 to 0.25 Hz, frequency grid lines at 0.05 Hz
intervals.

Fig. 3.4 : Nonlinear interactions snl(f, θ) from exact WRT computations
(left) and WW3 (center) and WAM DIA approximation (right) corre-
sponding to Fig. 3.1 after 12 h of model integration. Logarithmic scaling
with factor 2 between contours and lowest contour at ±10−4 m2. Grid
as in Fig. 3.3.
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Fig. 3.5 : Like Fig. 3.1 for the fetch-limited growth test test 02.

result in similar energy balances, and therefore in similar interaction shapes.
The WW3 and WAM approaches, however, do not have sufficient flexibility to
reproduce the sharp features of the WRT interactions.

Test case test 02 represents a conventional fetch-limited growth test in (quasi-)
stationary conditions. The grid consists of 50 active offshore grid points with a
spacing of 10 km. Perpendicular to the shore, three grid points are considered
with a grid spacing of 250 km. Spectral output is produced only for the central
grid line. The wind direction is offshore, with a wind speed of U10 = 20 ms−1.
Computations are performed for 24 h to reach quasi-stationary conditions. After
24 h, data for 50 grid points at the center of the coast are saved for evaluation.

Figure 3.5 shows mean wave parameters resulting from this test. The results
are similar to those of the time-limited growth test in Fig. 3.1, with two main
differences for all models. First, wave heights are significantly smaller in the fetch-
limited test. Qualitatively, however, the behavior of the WW3 and WAM version
of the DIA relative to the WRT approach are similar. Second, directions spreads
of the WW3 and WAM approaches (Fig. 3.5d) deviate more from the WRT
results for the shortest fetches. The one- and two-dimensional spectral results
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Fig. 3.6 : Like Fig. 3.3 for test test 02. Top panels for fetch of 10 km. Center
panels for fetch of 30 km. Bottom panels for fetch of 50 km. Note that
frequencies of up to 0.35 Hz are displayed. Lowest contour at 0.10 m2s.
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from this test are also very similar between the two tests, and will therefore not
be illustrated individually for test 02 here, with the exception of two-dimensional
spectra for short fetches, which are presented in Fig. 3.6.

For the shortest fetches in the model (10 km, upper panels), the computations
using the exact interactions (WRT) result in a bi- or tri-modal spectrum. The
DIA-based results (WW3 and WAM) cannot reproduce these spectra, and instead
result in very different tri-modal spectra. At the third offshore grid point (30 km,
center panels), the exact interactions produce a trimodal spectrum, and the WRT
and WAM approaches become more aligned with the WRT results. At the fifth
grid point (50 km, bottom panels), all model versions result in a convention
unimodal wind sea spectrum, and results have become compatible with the results
of the time-limited growth computations.

Test case test 03 represents the ‘homogeneous front’ case of Tolman (1992). A
one-point model without propagation is considered. Initially, the wind speed
U10 = 10ms−1 is aligned with the waves. After 4 h, the wind speed increases to
U10 = 20ms−1 and simultaneously turns by 90◦ during a 2 H period. The wind
then stays constant from 6 to 12 h, after which it decreases to U10 = 10ms−1 in
the next 12 h. Spectra are retained every 30 min, resulting in 48 test spectra.

Figure 3.7 shows mean wave parameters resulting from this test. Whereas
the actual evolution of the wave height Hs and peak frequency fp clearly differ
from those of previous test, the relative behaviors of the models based on the
WRT, WW3 and WAM approaches are essentially the same. For this case, the
evolution of the mean direction (θ), Fig. 3.7c) is not trivial. Both the WW3 and
WAM approaches turn the wave field too fast. As before, the WW3 and WAM
approaches produce directional distributions that are too broad.

Figure 3.8 shows one-dimensional spectral parameters after 6 h of model in-
tegration. The one-dimensional spectrum F (f) and steepness spectrum G(f)
(Fig. 3.8a,b) show results similar to those of previous test cases. The spectral
mean direction θ(f) (Fig. 3.8c) shows that for high frequencies, the mean wave
direction lines up with the wind direction (chain line). For lower frequencies, the
waves are still oriented more in the previous wind directions, with the WAM and
WW3 approaches turning the waves too fast compared to the WRT results. Re-
sults for the nonlinear interactions (Fig. 3.8e,f) again are similar to those of the
previous tests. Note the the dual peaks in the positive lobe for low frequencies in
snl(f) according to the WRT method is unique for this particular model output
time, and is not seen at other output times.

Figures 3.9 and 3.10 show the corresponding two-dimensional spectra F (f, θ)
and source terms snl(f, θ). The spectra and source terms again are qualitatively
similar for all three approaches, with significantly more detail in the exact (WRT)
solutions.
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Fig. 3.7 : Like Fig. 3.1 for time-limited ‘frontal passage’ test test 03.
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Fig. 3.8 : Like Fig. 3.2 for test 03 after 6 h of model integration.
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Fig. 3.9 : Like Fig. 3.3 for test 03 after 6 h of model integration. Lowest
contour at 0.02 m2s.

Fig. 3.10 : Like Fig. 3.4 for test 03 after 6 h of model integration. Lowest
contour at ±10−5 m2.
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Fig. 3.11 : Like Fig. 3.1 homogeneous rotating wind test test 04.

Test case test 04 is a one-point model without propagation and is characterized
by a wind with constant speed (U10 = 10ms−1), which rotates with a constant
speed (see Fig. 3.11c). The rotation is slow enough for the model not to separate
wind seas from swell in a 24 h model run. As before, data are saved every 30 min,
resulting in 48 test spectra and source terms.

Figure 3.11 shows the mean wave parameters for this test case. The mean
wave direction (Fig. 3.11c) systematically lags more and more behind the wind
direction. Eventually, this will result in a separation of wind sea and swell. This
however, occurs outside the duration of the present model run. Up to 15 h of
model integration, the other mean wave parameters shown in Fig. 3.11 show
behavior similar to that of other test cases. After that, the wave height Hs

obtained by the WRT methods decreases compared to those of the approximate
methods, whereas the directional spread σθ increases. This makes the latter part
of the model integration the most interesting part of this test.

Figure 3.12 shows one-dimensional spectral parameters at the end of the model
integration (24 h). The spectra (F (f) and G(f)) obtained with the WRT ap-
proach (solid lines) start showing a second spectral peak at a frequency of ap-
proximately 0.12 Hz. The WW3 and DIA approximations fail to show this initial
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Fig. 3.12 : Like Fig. 3.2 for test 04 after 24 h of model integration.

Fig. 3.13 : Like Fig. 3.3 for test 04 after 24 h of model integration. Lowest
contour at 0.10 m2s.

stage of separation between the wind sea and a swell. The mean directions of
the WW3 and WAM methods turn low-frequency waves too fast in the direction
of the wind, and show too little change of the directional spread as a function
of the wave frequency (Figs. 3.12c,d). The WRT method shows a distinct dual
positive lobe for snl(f) at low frequencies (solid line in Fig. 3.12e), which in this
test is a persistent feature. This feature is not reproduced by the WW3 and
WAM methods. This feature also has a distinguished impact on the nonlinear
fluxes in Fig. 3.12f.

Figure 3.13 shows the corresponding two-dimensional spectra F (f, θ). The
spectra again are qualitatively similar for all three approaches, with significantly
more detail in the exact (WRT) solutions, and a more clearly developing wind-sea
and swell separation. Note that this separation is mostly due to a much more
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Fig. 3.14 : Like Fig. 3.1 for slanting fetch test test 05.

sharply defined spectral shape in the ‘swell’ peak for the WRT results.

Test case test 05 represents a slanting fetch case. This test is identical to the fetch-
limited growth test test 02 with two exceptions. First, the wind is not directly
offshore, but is at a 45◦ angle with the shoreline. Second, the computational
domain is extended another 250 km offshore, to avoid artificial effects of an
artificial coastline on the offshore end of the line of output points. As in test
test 02, spectra and source terms are saved for 50 grid points at 10 km intervals
at the end of the computations (24 h).

Figure 3.14 presents mean wave parameters for this test. Whereas values of
wave height and peak frequency vary, behavior of these parameters for the WRT,
WW3 and WAM runs are compatible with those of previous test, although the
WW3 result now slightly but systematically overestimate the WRT wave heights.
Mean wave directions θ deviate greatly from the wind direction (Fig. 3.14c). In
fact, for the shortest fetches, the mean wave direction is onshore rather than
offshore (θ < 0◦). As with the previous tests, the WAM and WW3 approaches
turn the waves toward the wind direction too fast. Note that directional spreads
σθ (Fig. 3.14d) are somewhat smaller than with most previous tests.
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Fig. 3.15 : Like Fig. 3.2 for test 05 at 20 km offshore.

In a slanting fetch case, he most interesting model behavior occurs close to
the coast. For this reason one-dimensional spectral parameters for the second
grid point (20 km offshore) are presented in Fig. 3.15. In this case the spectrum
and particularly the steepness spectrum (F (f) and G(f), Fig. 3.15a,b) do not
show the distinctly enhanced spectral peak. As with previous test, the mean
spectral direction θ(f) (Fig. 3.15c) lines up with the wind for high frequencies,
but for low frequencies, the waves line up with the coast, and for the lowest fre-
quencies, wave energy actually travels to the coast under angles as large as 45◦.
As before, the WW3 and WAM approaches line up the waves too strongly with
the wind. The directional spread σ(f) (Fig. 3.15d) behaves differently than in
all previous tests. For frequencies around and below the spectral peak, the di-
rectional spread becomes uncharacteristically narrow. The nonlinear interactions
and fluxes (Fig. 3.15e,f) are very similar for all three approaches.

Figure 3.16 shows full two-dimensional spectra of the three approaches at
fetches of 10, 50 and 250 km. As before, the WRT approach provides a more
sharply defined spectrum. Note the persistence of the spectral rotation relative
to the wind. Even at fetches of 250 km (bottom line of plots) this can still be
observed, particularly at the spectral peak.

Test case test 06 is equivalent to the time-limited growth case test 01 but now in
the presence of a swell field. The initial swell wave height Hs = 6 m and peak
period fp = 0.06 Hz, and the swell propagates under an angle of 135◦ relative to
the wind direction.

Figure 3.17 shows the evolution of mean wave parameters for this test. The
behavior for the wind sea (green lines) is essentially identical to the behavior in
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Fig. 3.16 : Like Fig. 3.3 for test 05 at fetches of 10 km (first line), 50 km
(second line) and 250 km (third line). Lowest contour at 0.10 m2s.
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Fig. 3.17 : Like Fig. 3.1 for wave growth in the presence of swell test 06.
Green: wind sea. Red: swell
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Fig. 3.18 : Like Fig. 3.2 for test 06 after 12 h of model integration.
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Fig. 3.19 : Like Fig. 3.3 for test 06 after 12 h of model integration.

test 01. The red lines in this figure represent the behavior of the swell. During
the model integration, the swell height decays, the frequency shifts downward
from 0.060 to 0.056 Hz, the mean direction shifts by 10◦, and the directional
spread increases dramatically. The decay in wave height for the swell (red lines
in Fig. 3.17a) accelerates after 12 h of model integration using the WRT method
(solid line). This acceleration is not reproduced by the WW3 method, and un-
derestimated by the WAM method. All three methods show similar down shifts
in the peak frequency and directional shifts. The WW3 and WAM methods,
however, do not reproduce the (dramatic) increase in direction spread for the
swell as displayed when using the full WRT interactions.

Figure 3.18 shows the corresponding one-dimensional spectral parameters af-
ter 12 h of model integration. The spectra in Fig. 3.18a,b show that the swell is
significant in absolute energy but moderate in steepness. Due to the latter, the
impact of the swell on the interactions and nonlinear flux is small (Fig. 3.18e,f).
The rapid change of direction in the transition from the wind sea to the swell is
associated with a large directional spread (Fig. 3.18c,d).

Figure 3.19 shows the corresponding two-dimensional spectra. A subtle but
important detail of these spectra is that in the WRT results the swell and wind
sea spectra have started to become connected due to the nonlinear interactions,
whereas in the WAM and WW3 results, the wind sea and swell remain more
separated.

3.3.2 Shallow water tests

Shallow water test cases need to address conditions with small relative depths
kpd. For kpd > 10, water depths are uniformly deep. For kpd > 3, conditions
at the spectral peak are deep water, but some of the longer components of the
spectrum will start to feel the bottom. For kpd > 1, most of the spectrum is
in weak (four-wave) interactions conditions, whereas for kpd < 0.5, most of the
spectrum is in strong (four-wave) interaction conditions (see Part 3).
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Fig. 3.20 : Water depth (d) for test case test 11 (panel a) and test cases
test 12 and test 13 (panel b).

A simple way to generate conditions that are depth limited is to apply the
time-limited growth test test 01 in limited water depths. This will result in
reduced relative depths kpd, but the smallest relative depth than can be achieved
in this way is typically kpd ≈ 1.0−1.5. For the purpose of the present study, this is
not sufficiently shallow. Smaller relative depths can be achieved by incrementally
decreasing the water depth after some initial growth. This reduction needs to be
rapid enough to avoid that the model returns to an equilibrium wind sea for that
depth. Even then, the model will tend to produce a bimodal sea by growing a
new wind sea at higher frequencies. Relative depths that can be attained in this
way without generating double peaked spectra are typically kpd ≈ 0.85. This
describes the general design of depth-limited test test 11. The depths used in
this test are shown in Fig. 3.20. The initial water depth d = 50 m was chosen to
result in kpd ≈ 10 for the initial conditions with fp = 0.25 Hz.

Note that, with exception of the nonlinear quadruplet interactions, all depth-
limited test cases are run with the default settings of WAVEWATCH III version
3.14. This includes depth-limited breaking (Battjes and Janssen, 1978), but it
does note include nonlinear triad interactions. Not modeling a shift of energy to
higher frequencies due to triad interactions is beneficial in the present study as
it allows for smaller relative depths to evolve.

Figure 3.21 shows the evolution of mean wave parameters for test 11 accord-
ing to the WRT, WW3 and WAM approaches to the nonlinear interactions. Ini-
tially, the WW3 method shows sightly lower wave heights than the WRT method.
However, peak frequencies or relative depths are underestimated by the WW3
method. Therefore, the spectra obtained with the WW3 method feel the bot-
tom at a later time than the spectra from the WRT methods. hence, the WW3
method shows higher wave heights later in the integrations. The WAM method
again shows systematically lower wave heights at near identical peak frequen-
cies or nondimensional depths kpd. Directional spreads behave similar between
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Fig. 3.21 : Evolution in time of a) significant wave height Hs, b) relative
depth kpd, c) mean direction θ, and d) directional spread σθ for the
depth- and time-limited growth test test 11. Solid line: WRT. Dashed
line: WW3. Dotted line: WAM. Chain line: wind direction.

nonlinear approaches as in the deep water tests.
After 12 h of model integration, the relative depth kpd ≈ 2, and the spectral

shapes are compatible with those of deep water model runs. This is illustrated
in Fig. 3.22 (compare to Fig. 3.2). This is not surprising, since the water depth
is only moderately limited. After 24 h of model integration, however, the water
depth is becoming notably restricted, with kpd ≈ 0.7. This does have a distinct
impact on the spectral shapes as illustrated in Fig. 3.23. Spectral shapes and the
directional spread have changed drastically, and the signature of the nonlinear
interactions is significantly broadened in the frequency space.

Reducing the water depth in a quasi-homogeneous model run is somewhat artifi-
cial, although it can be representative for a wind wave field riding on a significant
tidal wave (e.g., Tolman, 1990, 1991a). A more conventional description of waves
in extremely shallow water is found on the beach on lee shores. An idealized
description of such a condition is presented in Fig. 3.20b, which is modeled here
with the mosaic or multi-grid wave model driver of WAVEWATCH III (Tolman,
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Fig. 3.22 : Like Fig. 3.2 for test 11 after 12 h of model integration.
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Fig. 3.23 : Like Fig. 3.22 after 24 h of model integration.
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Fig. 3.24 : Evolution in space of a) significant wave height Hs, b) relative
depth kpd, c) mean direction θ, and d) directional spread σθ for the
coastal wind sea test test 12. Solid line: WRT. Dashed line: WW3.
Dotted line: WAM. Chain line: wind direction.

2008a). On the left side of the domain (x = 0−5 km) a beach exists with a slope
of 1:250. This beach is modeled with a first grid with a horizontal resolution of
∆x = 250 m and hence with a depth resolution of ∆d = 1 m. From this grid,
20 output points are generated. For x = 5 − 32 km a foreshore model is used
with a spatial resolution of ∆x = 1 km. Close to the beach, the bottom slope is
1:1000, on the offshore side, the slope increases to a depth of 100 m at x = 32 km.
This second grid adds 27 more output grid points with depths increasing up to
100 m. The input boundary point of this nearshore grid is at x = 33 km. For a
swell case, swell conditions are directly applied at this input point. For a wind
sea case, a third grid with quasi-homogeneous conditions is linked in to provide
dynamically computed offshore boundary conditions.

Test test 12 is a wind sea case based on the spatial grid of Fig. 3.20b. The
wind speed U10 = 20 ms−1 under an angle of 20◦ with shore normal. The offshore
boundary conditions are spun up with a 48 h model run, after which the resulting
wind sea spectrum is kept constant. After this, the nearshore grid model is run
for 5 hours, and the combined beach and nearshore model is run for an additional
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Fig. 3.25 : Like Fig. 3.2 for test 12 at the offshore model boundary (x = 33 km,
d = 100 m).

hour. Test spectra for 47 grid points at the end of these runs are used as a quasi-
steady solution in the model testing and optimization. Mean wave conditions for
these test conditions are presented in Fig. 3.24.

Figure 3.24 shows offshore wave directions lined up with the wind direction,
after which refraction turns the waves to shore-normal directions. The peak fre-
quency (not shown here) remains nearly constant at fp ≈ 0.07, indicating that
wave conditions are mostly determined by the offshore boundary conditions. Cor-
respondingly, the relative depths range from kpd ≈ 2.0 at the offshore boundary
point to as small as kpd < 0.15 at the shore most grid point. For x < 4 km and
d < 15 m surf zone conditions exist where the wave heights become closely linked
to the local water depths. All parameters clearly show a change of wave regime
between this surf zone and conditions offshore of this surf zone.

This change of wave regime is also clear in the wave spectra. At the offshore
boundary (Fig. 3.25), spectral wave data are very similar to those of the time-
limited test test 11. Because the offshore conditions are computed as time-limited
wave conditions, this similarity is obviously expected. At the toe of the beach
(Fig. 3.26, x = 5 km, d = 20 m) the wave field is starting to transform into
a swell field characteristic as determined mostly by boundary conditions. The
spectrum becomes more peaked and loses some of the high-frequency signature.
This is somewhat clear in the spectrum F (f), and is obvious in the steepness
spectrum G(f) . On the coast (Fig. 3.27, x = 0.25 km, d = 1 m) the transition
to swell has been complete. Also, behavior between different nonlinear approaches
becomes large. In the WRT approach, interactions have transitioned to the strong
interactions in extremely shallow water. This has a distinct spreading impact
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Fig. 3.26 : Like Fig. 3.2 for test 12 at the toe of the beach (x = 5 km,
d = 20 m).
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Fig. 3.27 : Like Fig. 3.2 for test 12 at the shore (x = 250 m, d = 1 m).
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Fig. 3.28 : Like Fig. 3.24 for the swell propagation test test 13.

on the spectra. In the WW3 and WAM approaches the signature of strong
interactions is absent (see Part 3, Fig. 3.27e,f), and the swell remains too sharply
defined in frequency space (Fig. 3.27a,b).

The final test test 13 is a pure swell case for the idealized beach. The swell peak
frequency is set to fp = 0.07 Hz and the wave height at the offshore boundary is
set to Hs = 5 m. The beach and nearshore grid models are run for one hour only
to obtain a stationary solution. Mean wave conditions for these test conditions
are presented in Fig. 3.28.

Upon casual inspection, Fig. 3.28 appears to support the general view that
swells are not influenced by nonlinear interactions, since all three approaches
(WRT, WW3 and WAM) appear to give identical results. Close inspection of the
spectral result shows that this is indeed the case for depths d > 10 m. At shallower
depths, however, the WRT method results in a nonlinear interactions that is
orders of magnitude stronger than that of the WW3 and WAM approximations,
and that has a significant impact on the spectral shape. this impact is not limited
to extremely shallow depths in the last one or two grid points, as is illustrated
for the water depth of d = 5 m in Fig. 3.29.
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Fig. 3.29 : Like Fig. 3.2 for test 13 at x = 1.25 km, d = 5 m).

3.4 Metrics

Metrics used in the optimization methods presented here are based on the param-
eters defined in Section 3.2. To be able to combine individual errors for individual
parameters in a single error metric, all errors are normalized, and can hence be
expressed as a fraction or a percentage. Furthermore, within test cases, errors
for individual locations or times are normalized locally to ensure that errors in
all stages of wave development are weighted in a similar way. For instance, the
wave height error is addressed locally as

Hs,p − Hs,b

Hs,b
, (3.13)

where the indices p and b represent the results from the parameterization and
the baseline (WRT), respectively. This local error can be defined for the N test
spectra per test case. The overall wave height error εH for the test case can then
be defined as a conventional rms error

εH =

√

√

√

√

1

N

∑

N

(

Hs,p − Hs,b

Hs,b

)2

. (3.14)

Similar errors can be defined for the peak frequency (fp, εfp), mean direction (θ,
εθ), and directional spread (σθ, εσ)

εfp =

√

√

√

√

1

N

∑

N

(

fp,p − fp,b

fp,b

)2

, (3.15)
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εθ =

√

√

√

√

1

N

∑

N

(

θp − θb

∆θn

)2

, (3.16)

εσ =

√

√

√

√

1

N

∑

N

(

σθ,p − σθ,b

σθ,b

)2

. (3.17)

Note that there is no natural normalization for the mean direction error. Instead
a normalization angle ∆θn needs to be defined. Somewhat arbitrarily ∆θn = 90◦

is chosen here. These errors can be defined for the entire spectrum of for separate
spectral partitions (i.e., wind sea and swell). In the latter case, N represents the
number of output points for the test for which the parameter can be defined. If
the parameter is defined for the base case only, the corresponding local normalized
error cf. Eq. (3.13) is set to ±1. Similar errors are defined for the high-frequency
energy level (α, εα) and the nonlinear zero-frequency (f0, εf0)

εα =

√

√

√

√

1

N

∑

N

(

αp − αb

αb

)2

, (3.18)

εf0 =

√

√

√

√

1

N

∑

N

(

f0,p − f0,b

f0,b

)2

. (3.19)

Unlike the previous errors, the latter two errors are not relevant for spectral
partitions. Finally, Section 3.2 identifies the energy level and the functional
shape of the spectrum at intermediate high frequencies as a potential metric to
be used. Considering that such parameters correspond to the expectation that the
steepness spectrum G(f) is nearly constant in this range, a simple error measure
to address this is the direct comparison of steepness spectra in this frequency
range

εβ =
1

N

∑

N

√

∫ 3.0fp

1.5fp
[Gp(f) − Gb(f)]2 df
∫ 3.0fp

1.5fp
Gb(f) df

, (3.20)

where the integration bounds represent the part of the spectrum to be considered.
This type of error measure is also applicable to the one-dimensional spectral
parameters, particularly the spectrum (F (f), εF1), steepness spectrum (G(f),
εG1), and the source term (snl(f), εnl1)

εF1 =
1

N

∑

N

√

∫ f2

0
[Fp(f) − Fb(f)]2 df
∫ f2

0
Fb(f) df

, (3.21)
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εG1 =
1

N

∑

N

√

∫ f2

0
[Gp(f) − Gb(f)]2 df
∫ f2

0
Gb(f) df

, (3.22)

εnl1 =
1

N

∑

N

√

√

√

√

∫ f2

0
[snl,p(f) − snl,b(f)]2 df
∫ f2

0
s2

nl,b(f) df
. (3.23)

The upper integration bound f2 is explicitly defined to ensure that errors in
the parametric tail, which for F (f) are constant, do not dominate the error
measure, and that the integration range does not influence the results (as for a
steepness measure). Considering this, f2 should be linked to the transition from
the prognostic part of the spectrum to the parametric tail. To allow for part of
the tail to be in the integration range, f2 = 3.5fp is chosen, where fp is taken
from the wind sea partition of the spectrum. The error measures for the spectral
direction and spread (θ(f), εθ and σ(θ), εσ) can be defined similarly as

εθ =
1

N

∑

N

√

∫ f2

f1

[θp(f) − θb(f)]2 df

∆θn(f2 − f1)
, (3.24)

εσ =
1

N

∑

N

√

∫ f2

f1

[σp(f) − σb(f)]2 df

σθ,1,2(f2 − f1)
, (3.25)

where the directional error is normalized as in Eq. (3.16), and the spread is
normalized with the mean directional spread over the integration range from
Eq. (3.7). These directional parameters are defined even for spectral frequencies
with virtually no energy. To ensure that the error measure focuses on a spectral
range with energy, f1 and f2 are chosen to include frequencies only for which
F (f) > 0.001Fmax, where Fmax is the maximum energy of the corresponding
spectrum. Furthermore, these last two error measures do not address density
functions. Therefore, the integral needs to be divided by the frequency range of
integration to obtain a proper error measure.

Finally, the two-dimensional spectral and source term errors are defined as

εF2 =
1

N

∑

N

√

∫ 2π

0

∫ f2

0
[Fp(f, θ) − Fb(f, θ)]2 df dθ

∫ 2π

0

∫ f2

0
Fb(f, θ) df dθ

, (3.26)

εG2 =
1

N

∑

N

√

∫ 2π

0

∫ f2

0
[Gp(f, θ) − Gb(f, θ)]2 df dθ

∫ 2π

0

∫ f2

0
Gb(f, θ) df dθ

, (3.27)
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εnl2 =
1

N

∑

N

√

√

√

√

∫ 2π

0

∫ f2

0
[snl,p(f, θ) − snl,b(f, θ)]2 df dθ
∫ 2π

0

∫ f2

0
s2

nl,b(f, θ) df dθ
. (3.28)

with f2 defined as with the corresponding one-dimensional spectral error mea-
sures. This only leaves the model run time as a possible metric. There are two
main components to the run time. The first is the intrinsic cost of running the
parameterization, which is directly related to the complexity of the MDIA. The
second is related to the dynamic time step allowed by the parameterization. The
first impact of the time step is implicitly assumed in the complexity of the pa-
rameterization to be optimized. This run time will be used after optimization to
address the economic impact and justification for using more complex parame-
terizations. The second contribution to the run time can be used to indirectly
address the stability of the model integration, and will be used only to effectively
filter out poorly performing parameter choices.

Equations (3.14) through (3.28) provide fifteen individual error measures (up
from the five used in Part 2). Note that even more error measure are actually
used if the error measures based on mean parameters are applied to individual
wave fields. For each individual test case, these errors are combined into a single
error measure

εnn =
∑

εpap/
∑

ap , (3.29)

where nn represents the number of the test from Section 3.3, εp represents the
above fifteen error measures, and ap represent corresponding weights. Finally,
the total error metric for all test cases is computed as

εtot =
∑

εnnbnn/
∑

bnn , (3.30)

where bnn are the corresponding relative weights.

With errors and error metrics defined, it is essential to understand which kind
of errors to expect, to properly set weights factors in Eqs. (3.29) and (3.30).
Tables 3.1 and 3.2 show the individual error measures for the WW3 and WAM
approaches relative to the exact WRT approach for all nine test cases.

For both the WW3 and WAM approaches, mean errors including εα and εf0

are generally in the 10% range or smaller, with the expception of εα for the
WW3 approach. The WW3 approach results in more accurate wave heights Hs,
whereas the WAM approach results in more accurate peak frequencies fp and
high-frequency energy levels α. For both approaches one- and two-dimensional
spectral error measures are much larger and generally in the 100% range. Partic-
ularly the spectral error measure increase for the shallow water tests. Note that
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Table 3.1: Individual parameter errors in percent of the DIA using the WAM
model settings relative to the exact (WRT) approach for all test cases.
Two values for the first four error measures indicate errors for wind sea
and swell separately (test 06). Note that some of the error measures
have no meaning for the swell case test 13.

test case
01 02 03 04 05 06 11 12 13

εH 15.4 13.9 9.1 8.9 11.7 16.1 12.6 10.5 0.4
5.5

εfp 5.4 6.0 2.1 2.8 5.1 5.8 6.2 6.2 2.0
0.8

εθ 0.0 0.0 2.3 3.6 4.1 0.1 0.0 0.5 0.1
1.6

εσ 11.4 13.1 10.8 10.5 19.8 11.0 9.1 9.8 4.5
21.1

εα 9.4 6.4 15.9 17.1 9.1 10.0 11.4 5.0 —
εf0 2.0 3.3 4.1 7.0 5.0 2.5 3.7 9.1 —
εβ 70.0 61.0 60.6 62.8 64.2 70.8 66.2 83.3 —
εF1 151. 146. 117. 119. 115. 145. 130. 152. 82.0
εG1 80.3 76.1 63.5 64.5 62.9 81.1 73.9 108. 79.6
εnl1 87.8 89.7 81.8 83.5 65.0 88.5 82.0 93.6 99.5
εθ 0.1 18.1 18.1 25.8 34.0 26.3 0.0 17.0 10.8
εσ 46.3 40.7 45.9 48.5 56.0 43.4 41.3 50.9 74.7
εF2 138. 133. 109. 116. 133. 132. 118. 163. 112.
εG2 59.5 58.0 56.5 58.7 60.2 60.0 56.3 105. 107.
εnl2 87.5 89.3 81.6 82.2 74.6 88.2 81.1 96.3 99.5

even for the shallow water swell test, where most of the errors are concentrated
in the 5 to 10 grid points close to the coast, these errors are large.

The 136 error measures presented in Tables 3.1 and 3.2 are combined into
errors per test case using Eq. (3.29). The corresponding weights are presented in
Table 3.3. As discussed in Part 2, it is preferable to ensure that bulk parameters
such as the wave height Hs are well described. This can be achieved by assigning
large relative weights to the corresponding error measures. Somewhat arbitrarily,
this has lead to the error measures as indicated for the first test case (test 01).
Note that these error measures can be refined later, to focus the optimization on
selected features of the model integration. This will be considered outside the
scope of the present study.

The error weights for test 01 can be applied to all other test cases with two
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Table 3.2: Like table 3.1 for WW3 settings of the DIA.

test case
01 02 03 04 05 06 11 12 13

εH 3.3 1.9 2.0 3.9 3.6 4.6 4.4 4.3 0.4
14.5

εfp 11.3 10.8 8.4 9.1 10.3 11.8 11.8 9.1 2.0
1.1

εθ 0.0 0.0 3.4 6.8 4.3 0.1 0.0 0.3 0.1
2.2

εσ 6.8 8.3 5.7 5.2 13.7 6.3 4.5 5.6 4.6
22.3

εα 24.6 29.9 16.4 19.1 26.9 24.0 25.4 31.7 —
εf0 5.3 5.9 3.1 6.5 4.4 6.1 6.0 7.9 —
εβ 83.5 79.2 66.2 67.3 78.7 82.7 77.3 84.6 —
εF1 156. 151. 121. 129. 114. 150. 141. 157. 82.1
εG1 93.0 90.9 71.5 75.0 74.8 93.6 87.8 121. 79.7
εnl1 94.4 95.7 88.7 92.6 72.3 94.8 90.22 95.5 99.8
εθ 0.1 14.1 18.5 28.1 30.6 24.8 0.0 14.2 10.6
εσ 43.3 40.3 33.8 34.1 40.5 41.8 42.4 49.2 75.9
εF2 144. 138. 114. 129. 130. 139. 128. 168. 113.
εG2 66.1 67.7 57.5 58.2 59.6 66.3 65.5 114. 107.
εnl2 95.5 96.2 89.6 91.9 80.5 96.0 90.4 98.4 99.8

exceptions. First, in test 06 separate weights need to be assigned to mean pa-
rameters for wind sea and swell. To obtain a similar error balance as in the
other tests, these are set to half the corresponding values for tests with a single
wave field. Second, test 13 deals with swell only. Three parameters are irrele-
vant in this case, and hence the error weights for these measures are set to 0.
Furthermore, errors occur almost exclusively in the spectral space in this test
case. Hence, the overall error is computed without taking into account the error
measures for mean wave parameters,

Resulting mean error measures for all 9 test cases are presented in Table 3.4.
Error measures for all tests are comparable, with the exception of those for test 13.
The latter could be expected due to the rather different weighting of individual
errors in this test. In computing the overall total error measure in Eq. (3.30),
all tests considered will be weighted equally with the exception of test 13. The
latter test will be weighted at 30% compared to all other tests, to avoid artificial
dominance of this test in the overall error measure.
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Table 3.3: Error weights in Eq. (3.29) as used in the optimization procedure
for all nine test cases.

test case
01 02 03 04 05 06 11 12 13

εH 10 10 10 10 10 5 10 10 0
5

εfp 5 5 5 5 5 2.5 5 5 0
2.5

εθ 5 5 5 5 5 2.5 5 5 0
2.5

εσ 5 5 5 5 5 2.5 5 5 0
2.5

εα 5 5 5 5 5 5 5 5 0
εf0 3 3 3 3 3 3 3 3 0
εβ 3 3 3 3 3 3 3 3 0
εF1 1 1 1 1 1 1 1 1 1
εG1 1 1 1 1 1 1 1 1 1
εnl1 1 1 1 1 1 1 1 1 1
εθ 1 1 1 1 1 1 1 1 1
εσ 1 1 1 1 1 1 1 1 1
εF2 1 1 1 1 1 1 1 1 1
εG2 1 1 1 1 1 1 1 1 1
εnl2 1 1 1 1 1 1 1 1 1

Table 3.4: Overall errors in % for each test case based on the error in Ta-
bles 3.1 and 3.2 and the error weights in Table 3.3.

test case
01 02 03 04 05 06 11 12 13

WAM 26.2 25.2 23.1 24.2 25.4 26.2 23.9 29.0 83.2
WW3 27.4 27.6 22.6 25.0 26.4 29.8 26.1 31.2 83.5
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3.5 Parameter optimization

3.5.1 General considerations

.
The main goal of the present study is to objectively optimize the parameters of
several GMD configurations. For a GMD with a small number of free parameters,
this can be done by brute force mapping of model errors in parameter space. This
was done for a simple DIA with one representative quadruplet defined by one
parameter in Part 2. However, even for simple MDIA with two representative
quadruplets, brute force error mapping already becomes prohibitively expensive
(Part 2). Alternatively, (local) search algorithms can be employed to find error
minima in parameter space. A popular search method is the steepest descent
method, where the search pattern attempts to follow the steepest gradients of
the errors in parameter space. Such a requires that the error gradients are well
behaved (i.e., differentiable), and that there are well defined global minima. The
brute force mapping in Part 2 has shown that neither is the case for parameter
optimization in an MDIA. Hence, (local) steepest descent optimization can at
best be used here to refine a search once a near-optimum solution has been
found. Th presence of many local error minima in parameter space requires an
efficient global search algorithm such as multi-start descent algorithms, (directed)
random search or genetic algorithms.

In Part 2, genetic optimization techniques have been used successfully to
optimize MDIAs. A general description of such techniques can be found in Eiben
and Smith (2003). Genetic algorithms are loosely based on principles of natural
selection, and can be interpreted as directed random search. In Part 2, the
genetic optimization procedure was combined with a steepest descent method
to improve final convergence of the search algorithm, and test were performed
to check the sensitivity of the error to the final parameter settings. By and
large, the steepest descent method resulted in marginally better model errors,
and sensitivities to rounding off of parameter values were found to be minor.
Nevertheless, descent methods can be supplemental to genetic search, as they
can indicate the level of (local) convergence reached by the genetic search, and
because they are generally more effective in terms of final convergence. In Part
2 a relatively simple and traditional genetic search algorithm was used. In the
present study, the algorithms have been refined further, as will be discussed in
the following sections.

Genetic algorithms form a subset of what is generally identified as Evolution-
ary Computing (e.g., Eiben and Smith, 2003). In such methods, populations are
described with the genome of individuals. Individuals in the population generate
offspring using rules loosely based on natural reproduction, and the population
retains only the most successful members, loosely following ideas of natural selec-
tion (see Fig. 3.30). The description of a single member of the population will be
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(string of numbers/bits representing free parameters)

?
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retain some members∗

Fig. 3.30 : General layout of a genetic search algorithm (∗: optional).

discussed in Section 3.5.2. Section 3.5.3 describes the construction of the initial
population, and Section 3.5.4 describes the evolution of consecutive populations.

3.5.2 Describing the genome

The description of individual members of a population contains two elements.
First, the problem considered needs to be described adequately. Second, each
member of the population needs to be evaluated to obtain a fitness or score, to
be used to rank the members of a population, and to be used in procreation.

The basic elements of the description of a member of the population are
the free parameters in the GMD. Possibly added to this are free parameters in
the high-frequency Snl-based filter. Additional parameters ordering and defining
GMD layouts related to optimization strategies can also be added (see Section 4).

In Part 2, the free parameters of the MDIA were represented by a bit string,
following traditional concepts of Genetic Optimization (e.g., Holland, 1992). The
description of real-valued parameters by integer numbers or bits implies a build-in
accuracy or round-off of parameter values. For real-valued parameter optimiza-
tions as considered here, it is more natural to describe members of the population
with real numbers.
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Table 3.5: Basic description of members of a population. ig is the sequence
number of the parameter in the description. nq is the number of repre-
sentative quadruplets and iq is the quadruplet number. Accuracy refers
to fixed format description of parameter in data files. Note that ∆θ < 0◦

is used to identify (one- or) two parameter quadruplet definitions. std
and β refer to perturbation mutation in Table 3.6

ig Par. Eq. / Table range acc. type std
5(iq − 1) + 1 λ (2.18)/2.1 0-0.5 0.001 lin 0.25 β
5(iq − 1) + 2 µ (2.18)/2.1 0-0.5 0.001 lin 0.25 β
5(iq − 1) + 3 ∆θ (2.18)/2.1 0-90◦ 0.1◦ lin 45◦ β
5(iq − 1) + 4 Cd (2.30) 105 − 1010 3 digit exp βCd

5(iq − 1) + 5 Cs (2.30) 104 − 109 3 digit exp βCs

5nq + 1 m (2.31) 0-8 0.01 lin 4. β
5nq + 2 n (2.32) (-6) - 2 0.01 lin 4. β

An elementary description of a member of the population includes the five
free parameters per representative quadruplet and two additional scaling param-
eters in Eqs. (2.18) through (2.32) and in Table 2.1. In principle, the two scaling
parameters can be defined for each representative quadruplet separately, but
somewhat arbitrarily, m and n will be kept the same here for all quadruplets.
With nq representative quadruplets, this results in ng = 5nq +2 numbers describ-
ing a member of the population. The definition of the sequence of real numbers
describing a member of the population is given in Table 3.5.

In any computer description of real numbers, a round-off or accuracy error
exists due to the binary description of all numbers. Here, the population infor-
mation is stored in human-readable formated data files (for practical reasons).
This effectively creates an accuracy at which the parameters are described, as is
documented in Table 3.5.

To finalize the description of a member of the population, a fitness value needs
to be defined. As in Part 2, the fitness ζ is defined as the inverse of the total
error of Eq. (3.30)

ζ =
1

εtot

. (3.31)

Two additional remarks need to be made on the definition of the genome. First,
not all five quadruplet parameters will be considered in each optimization ex-
periment. Therefore, a mask is added to the the genome description identifying
which element iq of each member of the population is to be optimized dynami-
cally. With this mask, default values for each ig are also given. Second, following
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Part 2, acceptable relations between λ, µ and ∆θ are enforced explicitly in the
generation of the initial and subsequent generations. Combinations of λ, µ and
∆θ for which the deep water resonance conditions cannot be satisfied are not
allowed in the population. Before being applied to the wave model λ and µ are
interchanged to ensure that µ < λ in the wave model, and ∆θ is modified accord-
ingly to leave the deep water quadruplet layout unchanged. This ensures that in
the wave model all quadruplets are valid without unduly restricting diversity in
the population (e.g., Eiben and Smith, 2003)

3.5.3 Initial population

The initial population is generated by a simple random initialization. For λ, µ
and ∆θ direct physical limitations of the parameter settings are available, and
for the initial population, values for each member are set randomly assuming a
uniform distribution of values in the valid range of the parameter. The ranges
used in the optimization are presented in Table 3.5, and were determined as
part of the optimization process. Note that for the three-parameter definition
of the quadruplet not all combinations (λ, µ, ∆θ) result in a valid quadruplet.
Invalid quadruplets resulting from random initialization are not added to the
initial population.

Values for Cd and Cs are not naturally bounded. The valid range here is set
subjectively, based on the initial experiments from Section 4. After each individ-
ual optimization, the accepted range is checked against optimum values found in
the optimization. Optimum values close to the extrema are considered to indicate
a poor choice of the parameter range. Because large ranges of parameters are
considered here, either linear of exponential distributions are considered. In the
first case a uniform distribution is assumed, in the second a uniform distribution
of log(Cd) and log(Cs) are assumed.

The scaling parameter m is naturally bounded as derived in Part 34. The
scaling parameter n is not, and bounds as presented in Table 3.5 are based on
practical experience from Part 2 and from experiments described in Section 4.

3.5.4 Subsequent populations

Generating the next generation involves several activities; generation of children
from parents by mutation and recombination, parent selection, population models
and survivor selection.

Mutation and recombination are needed to create offspring that differs from
the parents. In the traditional Genetic Algorithm approach mutation corresponds
to random switching of selected bits in a child after the child is defined from the
genetic material of the parent, whereas recombination takes part of the genetic

4 Note that a wider range of values was deemed necessary in subsequent sections.
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description of the child from each parent, using a crossover process consistent
with biological genetic recombination. Using a bit string to describe the ’genetic
material’ of parent and child, the implementation of these processes is fairly un-
ambiguous. Describing this genetic material with a set of real numbers somewhat
complicates the definition of recombination and mutation.

In the process of recombination, a crossover point is determined. Left of this
crossover point information from one parent is obtained by the child. Right of
the crossover point, the child receives information from the other parent. When
this procedure is performed for a bit string representation of the parent and the
child, the crossover point will often appear inside the bit string describing a sin-
gle parameter. Consequent, this parameter in the child will be different from the
parameter value in each parent, whereas all other parameter values are directly
inherited from one of the two parents. With a real valued description of the pa-
rameters in the parents, the simplest approach (denoted as simple recombination
in Eiben and Smith, 2003, section 3.5.3), all parameter values are directly taken
from one of the two parents, depending on the position of the parameter relative
to a randomly chosen crossover point. This process ignores modification of the
parameter at the crossover point. Another process denoted as single arithmetic
recombination describes this second process by taking a single parameter in the
child, and defining it as a weighted average of the parameter values of the two
parents. Defining the parents as x and y, the child as c, and the index i rep-
resenting the crossover parameter value index, the parameter value of the first
child is determined as

ci = αxi + (1 − α)yi , (3.32)

and the parameter value for the second child is obtained by exchanging x and y.
Note that for α ∈ [0, 1] this always represents a smoothing operator that reduces
the genetic diversity of the population. In previous studies random values for
α have been used, but due to the general smoothing nature of Eq. (3.32) many
studies simply use α = 0.5.

In the present study, simple recombination is used with 0, 1 or 2 crossover
points, and with simple recombination or single arithmetic recombination left
or right of the crossover point with randomly selected α. This procedure is
designed to closely follow the successful bit string recombination of Part 2. The
corresponding parameter values used in the final optimization experiments are
gathered in Table 3.6.

In traditional mutation, each individual bit describing a parameter can be
changed in value. This effectively means that mutation can reset the parameter
value anywhere in its predefined valid range. For real numbers, a simple way
to duplicate this process it to reinitialize the parameter values consistent with
the way in which it was defined in the initial population (denoted as uniform
mutation in Eiben and Smith, 2003, section 3.4.3). The real value description
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Table 3.6: Parameters used in the generation of children from parents in the
genetic optimization procedure. See Table 3.5 for computation of std
from β in perturbation mutation from spread parameter.

Fraction of old population retained 0.20
Error factor for parent selection (γ) 2.00
Minimum parent fraction 0.25
Maximum parent fraction 0.50
Probability of 0 crossovers 0.50
Probability of 1 crossover 0.25
Probability of 2 crossovers 0.25
Probability of arithmetic recombination 0.50
Expected number of mutations 1.25
Probability of uniform mutation 0.30

(otherwise perturbation mutation)
Spread parameter in perturbation (β) 0.10

of parameter used here makes it simple to alternatively perturb the parameter
values slightly, typically by using a normal distribution with a small predefined
standard deviation. This represents a localized random search, or, in case of
integer representation of members of a population, it is also identified as creep
mutation.

In the present study, the expected number of mutations is predefined. The
probability of mutation for each individual parameter is defined as this expecta-
tion divided by the number of parameters to be optimized. For each parameter
to be mutated, a predefined fraction will undergo uniform mutation, and the re-
mainder will undergo a perturbation mutation. As an additional mutation option
mutation is allowed to switch off selected parameters in the GMD definition. µ
and ∆θ are allowed to be switched off so that a three-parameter quadruplet def-
inition can degenerate to a simpler definition. Cd and Cs are allowed to switch
off to use deep or shallow scaling only. If the parameter is subsequently switched
back on by mutation, uniform mutation is automatically used. The corresponding
parameter values used in the bulk of the optimization experiments are gathered
in Tables 3.6 and 3.5.

Two general population models can be used (Eiben and Smith, 2003, section
3.6). The first is the ‘generational model’, where for each next generation, all
parents are replaced by their children. The second is a ‘steady state’ model
where a fraction of the population is replaced by offspring.

Closely related to the population model is the survivor selection scheme used.
This can be either age-based, fitness based or a combination of both (Eiben
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and Smith, 2003, section 8.8). In Part 2, a scheme was used where the best
members of the population were retained, but where identical solutions were not
permitted in the population (steady state population model). In the present
study this successful approach is used again. With the real number description
of parameters, this requires the definition of a tolerance to identify identical
solutions. This tolerance is set as typically twice the parameter accuracy in
Table 3.5. Note that by stetting the fraction of the population that is to be
retained to 0, this will revert to a generational population model.

This leaves only the parent selection scheme to be defined. The selection of
parents allowed to produce offspring is (as in Part 2) defined as a fraction of the
total population. Here, the group of parents allowed to reproduce is defined by
their error

ε ≤ γεmin , (3.33)

where εmin is the error of the fittest member of the population. This results in
a fraction of the population that is allowed to become parent. This fraction is
furthermore limited by a minimum and a maximum fraction of the population.
After this fraction is established, a limiting fitness (ζlim) according to Eq. (3.31)
is defined as the fitness of the fittest member of the population that is not allowed
to become a parent, or, if l members of a ranked population are allowed to have
offspring, ζlim = ζl+1. The probability pi of each parent with index i ≤ l to be
chosen as a parent is then defined as

pi = (ζi − ζlim)

(

l
∑

i=1

ζi − ζlim

)−1

, (3.34)

with indices i for parents determined by a straightforward random selection.
Parameter settings for this procedure are largely taken from Part 2, and are pre-
sented in Table 3.6. From each set of parents two offspring are created by first ap-
plying crossover recombination and subsequently applying mutation. Only those
children that do not represent (near-) duplicates of already accepted members of
the population are added to the population.

3.5.5 Descent methods

In Part 2, steepest descent methods were used in combination with the genetic
optimization procedures. Whereas such procedures are not suitable to search
for optimal nonlinear parameterizations due to the behavior of the errors in pa-
rameter space (local minima and semi-discontinuous behavior, see Part 2), this
method is nevertheless useful to complement genetic optimization by checking
the level of convergence for high-scoring members of the population in the ge-
netic optimization procedure. In selected experiments, this has lead to significant
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reduction in the optimum error of the optimum GMD configuration, as will be
shown in the following section. With the modular elements used in the genetic
optimization package described in Tolman (2010), it is relatively simple to con-
struct a steepest descent search method starting from members of populations.
The steepest descent method used here has the following basic elements.

1) Perturb each parameter to be optimized both positively and negatively
to estimate the partial derivative of the model error with respect to the
parameter to be optimized.

2) Gather the partial derivatives (or discrete error changes for the param-
eter perturbations) with a positive impact on the model error into a
vector, and normalize this vector with its norm.

3) Use the normalized vector as the search direction in parameter space
and evaluate the model errors for a discrete set of parameter settings
along this line (Note: because the optimization packages heavily uses
parallelization of computations on a cluster, a discrete set of parameter
realizations is used instead of a dynamic search along the line).

This procedure is nested into two loops. In the inner loop the increments used
to estimate partial derivatives and discrete distances along the search line are
systematically reduced after progress has stopped with a given increment. A
second loop is repeated until the inner loop as a whole does not result in improved
model behavior.

3.5.6 Mapping of error space

In Part 2 mapping of errors in parameter space has been used to address er-
ror behavior and to set reasonable parameter ranges in the genetic optimization
procedure. With the genetic optimization package described in Tolman (2010),
errors can be mapped in parameter space simply by generating a single popula-
tion on a regular discrete grid in parameter space and compute the errors for this
population with the modular elements of the optimization package.

55



This page is intentionally left blank.

56



4 Optimizing the GMD

4.1 Previous work

Previous holistic optimizations of multiple DIAs have been presented in Tolman
and Krasnopolsky (2004), Tolman (2005) and Tolman (2009a). Of these papers,
particularly the latter is relevant for two reasons. First, it presents initial results
corresponding to the present report; second, it is used to select the formulation
of the GMD in terms of F (f) as used in the present report. Representing early
results of the present report, Tolman (2009a) differs from the present report in
various important ways.

1) In Tolman (2009a) the swell hight in test 06 in the WRT computations
was set to Hs = 5m as in the present report, but in all other computa-
tions it was erroneously set to Hs = 2.5m. This accounts for the much
larger errors for test 06 in Table 3 of Tolman (2009a) compared to the
present Table 3.4.

2) Error weights for individual tests and details of the genetic optimization
approach have been fine-tuned since Tolman (2009a) to improve conver-
gence, economy and final results of the genetic optimization algorithm.
Thus, results of Tolman (2009a) are not expected to be completely
reproducible with the present genetic optimization procedure.

Considering this, detailed optimization results from Tolman (2009a) should be
considered only as ‘quick-and-dirty’ initial results, to be superseded by results
presented in this study.

4.2 Strategies

The GMD leaves an almost infinite number of configurations to be tested for
their accuracy and economy. To realistically reduce the amount of optimization
work done, optimization strategies need to be considered.

As a first step to designing optimization strategies, it is important to acknowl-
edge that the GMD is excellently suitable for incremental optimization. First and
foremost, the GMD needs to perform well in deep water. If this is not the case,
there is no hope for the GMD to be applicable in a practical wave model. This
means that Cs, m, and n can initially be ignored while optimizing the quadru-
plet parameters and Cd. This optimization needs to consider tests test 01 through
test 06 only. Some optimized deep water GMD configurations can then be used
as the starting point of the shallow water optimization using test cases test 11

though test 13.
Another principle to be considered is that the simplest approaches are most

economical, and that improvement in accuracy is only acceptable at a reasonable

57



increase in computational cost. Therefore, single quadruplet GMDs need to be
considered as a baseline. From Part 2, it is understood that only the traditional
quadruplet layout can be used in a single-component GMD. For this GMD, pa-
rameter settings can be assessed by full mapping of error space. This will be
done in Section 4.3. After this, the same GMD will be optimized with the ge-
netic optimization approach (Section 4.4) for two reasons. First, to assess how
to perform the shallow water optimization, which has never been done before.
Second, to ‘test-drive’ the genetic optimization techniques.

Following the principle of simplicity, the one-parameter quadruplet and single
quadruplet approach should be expanded incrementally. Considering that the
traditional quadruplet definition can be stable with any number of representa-
tive quadruplets, adding quadruplets to this configuration will be assessed first
(Section 4.5). The logical next step after this is to use more complex quadruplet
definitions (Section 4.6). Based on the results presented in Part 2, this approach
should start with a minimum of three quadruplets.

The incremental increase of complexity naturally adds individual representa-
tive quadruplets one at a time, as was done in Part 2. However, alternatively,
quadruplets could be laid out to sample spectral space by setting (part of) a
fixed number of quadruplet configurations, while optimizing the strength of each
quadruplet. This approach is somewhat similar to the approach used in the
SRIAM algorithm (e.g., Komatsu, 1996; Tamura et al., 2008). Both strategies
for adding quadruplets will be considered here.

4.3 Mapping for a single-component GMD.

For a single-component GMD with the traditional one-parameter quadruplet def-
inition in deep water, only values of λ and Cd need to be optimized. For such an
optimization process, full mapping of error space is economically feasible. It is
furthermore interesting to address the behavior of errors in (λ, Cd) space. Note
that such an error mapping was already preformed in Part 2, showing, amongst
others, the somewhat discontinuous behavior of errors in (λ, Cd) space. The latter
justifies using a genetic optimization algorithm (or other random search methods)
to deal with limited possibility of using derivatives of errors in parameter space.
Note that it is prudent to repeat the mapping experiments from Part 2 due the
increased number of test parameters and test cases.

In Part 2, ranges of λ from 0.12 to 0.30 with increments of 0.005 and ranges
of Cd from 0.9 107 to 4.0 107 with increments of 0.1 107 were considered. Because
the somewhat noisy behavior of errors in this space has already been established
in Part 2, a larger parameter range with somewhat lower resolution will be con-
sidered mostly here. In the mapping, values of λ from 0.10 to 0.35 are considered
with increments of 0.01, and values of Cd are considered from 106 to 109 with a
logarithmic discretization with 31 discrete values. The overall errors εtot for the
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Fig. 4.1 : Total error εtot as a function of λ and Cd for GMD with single
quadruplet and traditional quadruplet definition for deep water tests
test 01 through test 06.
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Fig. 4.2 : Results of high-resolution error mapping for test test 01. (a) Total
error εtot as in Fig. 4.1. (b-d) Errors for selected individual error metrics.

six deep water tests are presented in Fig. 4.1.
Figures 4.1a and b are closely related to the two error mapping cases presented

in Part 2 (Figs. 7.12 and 7.13), and show compatible results. All six test cases
show qualitatively and quantitatively similar results, with some test cases showing
some irregular error behavior for the lowest values of Cd considered here, and
with test 06 showing different results for the largest values of λ. The latter can
be attributed to the error behavior of the swell, as will be discussed below. In
general, there is a large area of near-optimal model behavior, with poorly defined
local error gradients. This makes steepest descent methods less effective.

Figure 4.2 presents results for high-resolution error mapping for a reduced
(λ, Cd) space, which has been performed for test 01 (time-limited growth) only,
and for illustration purposes only. The total error (Fig. 4.2a) shows two local
minima. The error of the peak frequency (Fig. 4.2b) has a rather complicated
structure. The error for α has a large but narrow area of optimal errors, where
close inspection reveals many local error minima. Finally, the error in G(f, θ)
shows several local error minima, as well as a large area of near-optimal errors.
All these features are detrimental for steepest descent optimization algorithms,
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Fig. 4.3 : Error maps as a function of λ and Cd for a GMD with a sin-
gle quadruplet and traditional quadruplet definition for deep water test
test 05. (a) Wave height. (b) Peak frequency. (c) Mean direction. (d)
Directional spread.

and justify the development of the genetic optimization approaches. Furthermore,
the latter algorithm can be parallelized easily, unlike the former. All this, together
with its general economy, justifies using the genetic optimization approach here.

Figures 4.3 through 4.6 present individual error measures for all individual
error metrics for test test 05 (slanting fetch). This test was chosen as represen-
tative for all tests. As far as this is not the case, additional error measures for
additional tests will also be presented.

Figure 4.3 presents errors for the mean wave parameters Hs, fp, θ and σθ.
For the significant wave height Hs (Fig. 4.3a), the error map shows a well-defined
area of optimal model behavior. However, this is a narrow and elongated area.
Rather than having a clear optimum parameter setting, there appears to be a
well-defined line in (λ, Cd) space with near optimal model behavior. For the peak
period fp and mean direction θ (Figs 4.3b and c), the area in parameter space
with near optimal model behavior is not as well-defined, and generally does not
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Fig. 4.4 : Like Fig. 4.3 for (a) the nondimensional energy level α, (b) the
nonlinear zero-flux frequency f0, and (c) the nonlinear energy level β.

coincide with the area of optimal behavior for the significant wave heights Hs.
For the directional spread σθ, the optimum area is also poorly defined and not
coincident with the optimum area for Hs, and furthermore shows discontinuous
behavior in the upper right corner of the figure.

Figure 4.4 presents the other derived scalar parameters of the spectrum α,
f0 and β. Of these, the errors for α and β show a clear near-optimum function
between λ and Cd, similar to the one found for the error in Hs. The zero-flux
frequency f0, on the other hand, shows very little error variability in parameter
space, with multiple optimal error locations in parameter space. Note that errors
in f0 are generally small throughout parameter space.

Figure 4.5 presents error maps of the one-dimensional spectral parameters
used in the error metrics (spectrum, steepness spectrum, direction and spread as
function of frequency and nonlinear source term). The spectrum and steepness
spectrum (Figs. 4.5a and b) show rather large errors, but again with a clearly
defined relation between λ and Cd with near-optimal behavior. Note that the
error of the spectrum is particularly high, which is understandable because these
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Fig. 4.5 : Like Fig. 4.3 for (a) one-dimensional spectrum F (f) and (b) steep-
ness spectrum G(f), (c) mean direction θf and (d) directional spread
σ(f), and (e) one-dimensional interactions snl(f).
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Fig. 4.6 : Like Fig. 4.3 for (a) two-dimensional spectrum F (f, θ), (b) steep-
ness spectrum G(f, θ), and (c) source term snl(f, θ).

errors are dominated by errors in representing the spectral peak. For the steepness
spectrum, errors are smaller, since they focus on energy levels for a much larger
range in frequency space. The spectral direction and directional spread (Figs. 4.5c
and d). show much smaller errors, and particularly for the direction do not show a
well defined area of optimum model behavior. The interactions snl(f) (Fig. 4.5e)
show smaller errors than the spectral parameters, with a clearly defined area of
near-optimal model behavior, as well as some discontinuous error behavior in the
upper left corner of the figure.

Finally, Fig. 4.6 presents results for the two-dimensional spectra and source
term. Resulting error maps are similar to the error maps for the corresponding
one-dimensional spectra and source term in Fig. 4.5, however, with a better
defined area of optimal model behavior, particularly for the conventional wave
spectrum.

For all other tests, error maps per parameter show some differences, but gener-
ally show the same behavior. Only for test 06 (wave growth with swell) different
errors occur due to the separation in mean parameter error for wind sea and
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Fig. 4.7 : Like Fig. 4.3 for test test 06 (a) wave height Hs for wind sea and
(b) for swell.

swell. This becomes particularly evident in the wave height error maps, as shown
in Fig. 4.7. For wind seas, the wave height error map is very similar to the maps
of the other test cases. For the swell, the wave height errors are clearly differ-
ent, with discontinuously high errors for large λ, which are responsible for the
somewhat different total errors at high λ for test 06 in Fig. 4.1.

Figures 4.3 through 4.7 indicate which error parameters contribute most to
the optimization process; this will generally be the error parameters with well-
defined optimal error areas in parameter space, and with a large range of the
errors in parameter space. Inspection of the figures suggests that the wave height
Hs, energy levels α and β and one and two dimensional variance and steep-
ness spectra will dominate the error estimates and therefore the optimization.
Correspondingly, the errors of the peak frequency, directional measures and the
zero-flux frequency do not have clear signals in parameter space, and hence will
not have a big impact on the error or optimization process. This also implies
that these parameters do not have a big potential in terms of being optimized in
the optimization process.

Another observation that can be made from these figures is that areas in
parameter space of optimum model behavior for different model parameters gen-
erally do not coincide. This was also observed in the experiments performed in
Part 2 (see Fig. 1 of Tolman and Krasnopolsky, 2004). This implies that for a
DIA or a GMD with a single representative quadruplet defined as in the DIA it is
impossible to optimize all metrics simultaneously, and the choices of error weights
in Eq. (3.29) Table 3.3 will influence the resulting optimum λ and Cd. Note that
in test 06 wind sea and swell wave height cannot be optimized simultaneously.

So far, error mapping has been considered for deep water only. In shallow water,
many more parameters need to be optimized than in deep water. In its simplest
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Fig. 4.8 : Total error distribution in (n, Cs) space for test 11 for various val-
ues of m.

form, the GMD then needs estimates for λ, Cd, Cs, m and n in Eqs. (2.30) through
(2.32), possibly with separate values of λ for Cd and Cs. In its full form, the
corresponding mapping exercise is of too high dimensionality to be economically
feasible. The dimensionality can be reduced by using ‘standard’ settings of deep
water parameters of the wave model (λ = 0.25, Cd = 1.0 107) with a single
estimate for λ. This leaves only a three-dimensional parameter space (Cs, m, n).
Furthermore considering that Part 3 suggests that the scaling is only moderately
influenced by the choice of m, the first error mapping efforts for shallow water
will consider the Cs, n parameter space for a very coarse discretization of m
(m ∈ [0, 1, 2, 3, 4]).

Maps of the total error as a function of n and Cs for tests test 11 through
test 13 for various values of m are presented in Figs. 4.8 through 4.10. Two
observations can be made directly from these figures. First, error maps per
test case are largely insensitive to the choice of m, as was expected. However,
the radical differences between error maps for different test cases may not have
been expected, and suggest that the tests rely on different aspects of the GMD
for optimal model behavior. A first observation can be that the error maps for
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Fig. 4.9 : Like Fig. 4.8 for test 12.

test 12 can loosely be interpreted as the combination of the error maps for test 11

and test 13.
The differences in error behavior between the the three tests can tentatively be

attributed to significant differences in the conditions in the three tests. the most
extreme shallow water conditions are encountered in the beach test, particularly
when only severely depth-limited swells are considered (test 13, Fig. 4.10). In
this case, optimum errors are found for a range of values of n and Cs, centered
around expected values for n ≈ −3.5, as is expected to produce proper scaling
behavior of Snl. For test 11, however, optimum value for n deviate greatly from
the expected value. In the latter test, however, truly shallow water conditions
do not occur, and, furthermore, some of the errors are related to errors in the
deep water conditions of initial growth. In this case, n is not required to produce
proper shallow water scaling behavior, and hence, n and Cs produce optimum
behavior in unexpected parameter ranges. For the remaining test, both shallow
water growth and severe depth-limited growth occur, and optimum parameter
values correspond to both parts of parameter space found before.

The differences in error behavior between the three test cases poses the ques-
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Fig. 4.10 : Like Fig. 4.8 for test 13.

tion on how to optimize the free shallow water parameters in the GMD. If test 11

results in optimized parameter values of n inconsistent with shallow water scaling
as found in Tolman (2009a) and in Figs. 4.9 and 4.10, should this test still be
used? There are three options to deal with this behavior. (i) Do not consider
this test. This does not appear to be advisable, since the test does provide prac-
tical shallow water conditions, and since this would imply that test 12 should
be abandoned too. (ii) n can be preset to n ≈ −3.5 based on Tolman (2008b)
to ensure proper scaling behavior, without dynamic optimization. (iii) n can be
optimized in a limited range only, typically −5 < n < −1 to ensure optimization
in a proper scaling range only.

The individual error measures for individual error metrics again display dif-
ferent behavior as with the deep water test. Generally, conclusions are similar as
compared to the deep water test cases, and therefore additional figures are not
reproduced here.

The above assessment of optimizing n, and the insensitivity of errors to the
values of m, suggest another mapping exercise. Keeping m = 2 and n = −3.5
constant, errors as a function of Cs and a separate λ for shallow water can be
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Fig. 4.11 : Total error εtot as a function of a shallow water λ and Cs for GMD
with deep water quadruplet with λ = 0.25 and Cd = 1. 107 and with
shallow water quadruplet with m = 2 and n = −3.5 for tests test 11

through test 13.

mapped. As with the other shallow water tests, λ = 0.25 for the deep water
quadruplet with Cd = 1.0 107, as in the default setting of the wave model. Note
that this model setting in fact requires two quadruplets, one with deep water
scaling exclusively (Cs ≡ 0), and one with shallow water scaling only (Cd ≡ 0).

Figure 4.11 shows the total error maps as a function of λ (shallow water) and
Cs for the three shallow water tests. Test test 11 (Fig. 4.11a) shows virtually
no sensitivity of the error to the two parameters. This suggests that this test
is not suitable for identifying optimum settings of these parameters, when m
and n are set and represent reasonable scaling behavior in shallow water. Note
that these results are tentatively consistent with the lack of sensitivity to Cs

in the corresponding range of n in Fig. 4.8a. Test test 12 (Fig. 4.11b) shows
more sensitivity to the mapping parameters, with clear areas with poorer model
behavior, but with a fairly undefined area of optimum model behavior. Finally,
test test 13 (Fig. 4.11c) shows clear sensitivity of the model to parameter choices,
with a well defined area of optimum parameter settings. Note that the errors in
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Fig. 4.12 : Selected individual error measures corresponding to Fig. 4.11 for
test 12.

the latter figure are much larger due to the different composition of the total
error as outlined in Tables 3.3 and 3.4.

The total error for test 12 in Fig. 4.11 is dominated by the errors in β and the
one and two dimensional spectra and source terms. This is illustrated in Fig. 4.12
with some selected error maps.

The total error for test 13 is entirely made up of spectral and source term
errors. The spectral direction and directional spread are not sensitive to the
choice of the GMD parameters, but all spectral and source term errors are. This
is illustrated in Fig. 4.13. The spectral errors clearly define areas in parameter
space with optimal model behavior, the interaction errors more clearly identify
areas with poor model behavior, particularly for small λ and large Cs.

This concludes the discussion of the mapping exercises. For deep water, previous
conclusions for a less complete holistic optimization have been confirmed, as
have been reasonable parameter ranges for the free parameters in the GMD. For
shallow water, new ground has been broken. It has been shown that test 11 is
dominated by ‘deep water’ error growth behavior, and has limited usefulness for
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Fig. 4.13 : Like Fig. 4.12 for test 12.

the shallow water optimization, other than possibly eliminating negative impacts
on intermediate water depth wave growth behavior. Test test 12 mixes deep water
growth behavior with shallow water behavior, whereas test 13 is dominated by
shallow water (swell) conditions. The mapping particularly identified that the
GMD is not expected to be particularly sensitive to the choice of m, and that a
full free choice of n may negatively impact the shallow water scaling behavior.
These findings will be discussed in more detail in the following sections.

4.4 Single component GMD

As has been shown in previous parts of this study, a single component GMD
can only work if it uses the quadruplet of the conventional DIA. For this GMD
layout the error mapping of the previous section can be used to determine opti-
mum parameter settings, and the genetic optimization is not needed to make the
optimization feasible. However, the genetic optimization is used here to test its
behavior against the mapping exercise. Deep and shallow water optimization will
be addressed in Sections 4.4.1 and 4.4.2, respectively. A summary of optimization
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results will be given in Section 4.4.3.

4.4.1 Deep water

The deep water optimization for this quadruplet considers all six deep water tests,
and optimized λ and Cd for a single representative quadruplet as in the mapping
exercises of Section 4.3. Because only two parameters need to be optimized,
only a small population and a small number of generations are needed. Here,
the population size is set to 50, and 10 generations are considered. Several initial
random populations are considered, and a steepest descent search is initiated from
the best members of the last generation of each experiment. The experiments
result in the same optimum model setting with λ = 0.231 and Cd = 2.54107 after
the steepest descent search, although best results for the genetic search algorithm
differ by negligible amounts between experiments with different random initial
populations.

With the genetic optimization, the focus will be on two things; first, on the
evolution of the individual generations towards near-optimal solutions, and sec-
ond on the evolution of the minimum model errors and the simultaneous loss of
diversity of (near-optimal) generations.

Figures 4.14 and 4.15 illustrate the evolution of populations for one of theses
optimization procedures. In the former figure, members are colored according to
their total error εtot, making this figure in essence a sparse sampling of the error
mappings produced in the previous sections. In the latter figure, members are
colored according to their rank in the population, rank 1 being the member with
the smallest error, and rank 50 the member with the largest error.

The first generation in Figs. 4.14 and 4.15 by definition randomly samples the
parameter space, with the figures showing the entire parameter space considered
in the optimization. In generations 2 and 3, the population rapidly moves toward
a general area with lower model error. In generations 5 through 10, the area
covered the 1/3 of the population with the lowest errors (blue colors in Fig. 4.15)
contracts until it focuses on the best possible solution with the smallest model
error. In generation 10, diversity for this part of the population is hence clearly
reduced or effective lost.

For this simple optimization problem, meaningful error maps as presented in
Figs. 4.14 and 4.15 are easily defined and analyzed. For more complex prob-
lems with more free parameters, such plots cannot easily be designed, yet an
assessment of model convergence and population diversity is essential to assess
the success of the optimization approach. Alternately, the evolution of the best
performing member of the population (smallest error εtot) gives some indication
of the convergence of the genetic optimization routine, whereas multiple random
initial conditions give some indication of how well the optimization problem is
posed (i.e., are there multiple near-optimal solutions). Comparing the error of the
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Fig. 4.14 : Example populations for deep water single component GMD. Si-
multaneous optimization of λ and Cd, 50 members in population, 10
generations in optimization. Color scale identifies total error for six
deep water tests
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Fig. 4.15 : Like Fig. 4.14, color representing rank in the population.
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Fig. 4.16 : Minimum errors (εmin, solid lines) and average errors for fittest
half of population (εavg , dashed lines) as a function of the generation for
various optimization experiments (identified by color) with traditional
quadruplet definition and one representative quadruplet.

best performing member of the population with the average of, for instance, the
50% best performing members of the populations (εavg), gives a quick assessment
of diversity of the population, assuming that there is a reasonably well defined
area of best model performance in parameter space.

Figure 4.16 shows the evolution of εmin (solid lines) and εavg (dashed lines)
for the optimization of λ and Cd for three different initial populations (red, green
and blue).

The three experiments show drastically different errors for the initial popu-
lation, but convergence to the same optimum error in less than 10 generations.
Initially, εavg is significantly larger than εmin, indicating diversity in the initial
populations. For the later generations, εavg ≈ εmin, indicating a lack of diver-
sity, suggesting that considering more generations is not likely to produce better
parameter estimates.

Note that the green population appears to have reach an asymptotic solution
in the fifth generation, but then again moves to better solutions. This behavior
can be expected with genetic optimization, as it focuses on near-optimal solutions,
with no guarantee that ‘the’ optimal solution is found. This makes it useful to
(i) try optimization with various initial populations, and (ii) augment the genetic
optimization with steepest descent methods. The latter is needed if diversity is
lost without reaching the (local) minimum.

4.4.2 Shallow water

In shallow water, there are more than two free parameters that could be opti-
mized. These are the m and n parameters in the scaling functions, the shallow
water proportionality constant Cs, and possibly a separate value of λ associated
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Fig. 4.17 : Like Fig. 4.16 for shallow water optimization of n and Cs, with
deep water settings of λ and Cd from (a) the WW3X and (b) the GMD1
model setup.

with Cs. In the latter case, there will be two representative quadruplets, one for
asymptotic deep water scaling only, and one for asymptotic shallow water scaling
only. On top of this, a deep water setting for λ and Cd needs to be adopted to
start with the optimization. For the latter deep water setup, the logical choice
is to adopt the optimum model settings from Section 4.4.1, i.e., λ = 0.231 and
Cd = 2.54 107. Another sensible setting to consider is the default setting of the
wave model, i.e., λ = 0.250 and Cd = 1.00 107. In the latter case, introducing
the GMD does not influence the wave model in deep water, but modifies the
model results in extremely shallow water by introducing more accurate scaling
functions. The deep water setting for the optimized GMD and extended WAVE-
WATCH III model setting will be denoted as ‘GMD1’ and ‘WW3X’ setting in
the remainder of Section 4.4.

From the initial shallow water optimization experiments reported in Tolman
(2009a), it is clear that the model results are fairly insensitive to the choice of
the scaling parameter m. Furthermore, optimum values of m as found in the
latter paper (m < 1) are much smaller than tentative choices of m based on
the results from Part 3 (m ≈ 4). To explore this issue further, the GMD1 and
WW3X model setups are optimized for the three shallow water test cases with
an essentially deep water model setup with Cs ≡ 0, while optimizing m only.
Both optimization tests result in an optimum value of m = 0. Considering the
relative insensitivity of the results to m, and in order to simplify the optimization
procedures, m = 0 will therefore be used in all other optimization experiments
reported in this Section.

With m set, the simplest optimization procedure is to dynamically optimize
Cs and n. Due to the low dimensionality of this problem, this could again be
done using the mapping reported in Section 4.3. However, in order to test the
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Table 4.1: Optimal GMD setting for traditional quadruplet layout and single
deep quadruplet optimizing Cs and n with given λ and Cd. Combined
error for shallow water tests only, m = 0.

WW3X λ Cd Cs n εtot (%)

Exp. 1 0.250 1.00 107 4.94 105 -3.23 43.4
Exp. 2 3.77 105 -3.49 43.4
Exp. 3 3.55 105 -3.55 43.4
Fixed n 3.74 105 -3.50 43.4

GMD1 λ Cd Cs n εtot (%)

Exp. 1 0.231 2.54 107 3.43 105 -3.43 41.7
Exp. 2 2.31 105 -3.77 41.6
Exp. 3 2.55 105 -3.69 41.6
Fixed n 3.12 105 -3.50 41.7

genetic optimization schemes, and in order to test how well posed the optimization
problem is, the optimization again is performed using the genetic optimization
procedure, augmented with a steepest descent algorithm. Note that, based on the
mapping experiments, values of n are not allowed to be larger than −2, which
is different from the base setup started with in Table 3.5. These experiments
have been performed with the GMD1 and WW3X base model settings, using
10 generations with 50 members each, and starting each experiment with three
different randomly selected initial generations, and are identified as GMD1a and
WW3Xa, respectively.

Error evolution for these experiments is shown in Fig. 4.17. Errors change
little per generation, suggesting an ill-posed optimization problem (or a large
enough initial population to randomly find optimum values). The ill-posed na-
ture of these experiments is further illustrated in Table 4.1, which shows that
experiments with different initial populations result in clearly different optimum
values but with near-identical model errors. The table furthermore shows that if
n is preset to n = −3.5, which was shown to result in near-optimal scaling in Part
3, consistent results are also found. These first shallow water optimization exper-
iments suggest that m = 0 and n = −3.5 could be used without further attempts
at optimization. This leaves two optimizations that have been considered. In
the first, only Cs needs to be optimized. This is done using five generations with
20 members each. This trivial optimization experiment will not be discussed in
more detail, and the results are identified as WW3Xa and GMD1a in Table 4.2.
Finally, a separate shallow water quadruplet can be defined, optimizing λ to-
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Table 4.2: Optimal GMD setting for traditional quadruplet layout and single
deep and/or shallow quadruplet. Combined error for shallow water tests
only, m = 0, n = −3.5.

model λ Cd Cs εtot (%)

WW3X 0.250 1.00 107 — 45.8
WW3Xa 0.250 1.00 107 3.74 105 43.4
WW3Xb 0.250 1.00 107 — 42.2

0.184 — 1.63 105

GMD1 0.231 2.54 107 — 44.2
GMD1a 0.231 2.54 107 3.12 105 41.7
GMD1b 0.231 2.54 107 — 40.7

0.184 — 1.63 105

gether with Cs, using 10 generations with 50 members. Resulting model settings
are shown as WW3Xa and GMD1b in Table 4.2, and the error evolution of these
experiments are presented in Fig. 4.18.

Table 4.2 shows error reductions when going from a deep water only model
setup, to a single quadruplet with deep and shallow water scaling, to a GMD
with a single deep and a single shallow water quadruplet. This error reduction
occurs for both the WW3X and GMD1 deep water settings. Note that the table
presents the total error for the shallow water tests only. The basis of these errors
are the accuracy with which the deep water settings of the approximations are
able to provide the ‘deep water’ wave growth boundary conditions in test test 11

and test 12.
Finally, Fig. 4.18 shows the error evolution of the last optimization tests. The

error evolutions are more similar to the evolution of errors for the deep water
model setup, and hence suggest a better posed optimization problem. The better
posed nature is also evident in the fact that the steepest descent methods for all
three experiments results in identical or near identical parameter settings. Note
that for the green experiment in Fig. 4.18a population diversity is lost before
the optimum error is found. However, the steepest descent method applied after
generation 10 did find the unified optimum solution, and running this experiment
for more generations did eventually converge of the solution of the other two
experiments. This again illustrates the random and near-exact nature of the
genetic optimization procedures. Note also, that the latter descent method proved
as costly as running several generations in the genetic algorithm, illustrating the
general efficiency of the genetic algorithm to get near-optimal solutions.
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Fig. 4.18 : Like Fig. 4.17 optimizing λ and Cs as a second shallow water only
quadruplet.

4.4.3 Summary

Six viable single-quadruplet GMD settings are presented in Table 4.2. They repre-
sent a GMD with deep water scaling only, a GMD with mixed deep and shallow
water scaling, and a GMD with separate deep and shallow water quadruplets.
For these three options, the default deep water quadruplet settings of WAVE-
WATCH III are used, or the separately optimized deep water GMD settings from
Section 4.4.1. For these six model settings, errors for each individual test as well
as composite errors are presented in Table 4.3. Note that the total errors in the
Tables 4.2 and 4.3 differ, since the total errors in Table 4.2 refer to the shallow
water tests only, whereas the total errors in Table 4.3 refer to all test cases. Note,
furthermore, that the results for WW3 in Table 3.4 differ slightly from the results
for WW3X presented in Table 4.2, because the former are computed using the
traditional DIA whereas the latter are computed using the GMD. In deep water,
minor differences occur due to different implementations of essentially identical
equations, whereas in shallow water, quadruplet layout are evaluated differently.

For deep water (tests test 01 through test 06) the optimization results in sig-
nificantly smaller errors for the GMD1 models than for the WW3X models. Re-
sulting model behavior will be presented in more detail in Section 4.7. Sufficeth
to say here that smaller errors in some ways can be misleading. In Sections 3.3.1
and 3.3.2, it is shows that the WW3(X) approach gives a very good representation
of the wave height, but at a cost of rather large errors in the spectral shape. The
GMD1 approach reduces errors significantly by reducing errors in spectral shape,
but at the cost of a poorer description of the wave height. Since the wave height
is the first and often the only parameter from the wave model seen by users, the
GMD1 approach might therefore be perceived as being of poorer quality than the
WW3X approach.

In shallow water, adding shallow water scaling to the existing quadruplet, or
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Table 4.3: Overall errors in % for each test case for the configurations in
Table 4.2. Error for deep water test cases are identical for all WW3X
or GMD1 cases, and are therefore not repeated in the Table.

test case
01 02 03 04 05 06 11 12 13 tot

WW3X 27.4 27.7 22.5 25.1 26.5 29.8 24.6 29.4 83.5 32.9
WW3Xa 24.7 31.0 74.5 32.1
WW3Xb 24.7 29.9 72.0 31.7
GMD1 22.2 21.7 19.1 20.4 20.5 23.1 21.1 28.3 83.3 28.8
GMD1a 21.1 29.9 74.3 28.0
GMD1b 21.1 28.8 72.0 27.7

adding a shallow water quadruplet (’a’ and ’b’ approaches) reduces composite
model errors. Error reduction is significant for the swell propagation test test 13,
but for the wind sea tests, moderate increases of the errors are observed. This
can be attributed to the fact that forcing n = −3.5 to force shallow water scaling
for extremely shallow water automatically focuses the optimization on the swell
test, but will not necessarily allow for improvement of the wind seas in more
intermediate water depths.

Considering the limited experience with shallow water optimization, and con-
sidering experiences presented in Tolman (2009a), it is important to address the
quality of GMD in shallow water in some detail. Considering the above, the most
extreme shallow water conditions occur in the surf zone for the swell propagation
onto a beach. In Fig. 4.19, spectra from various test for a water depth of 3 m
are presented. The results for the deep-water scaling only WW3X and GMD1
approaches (dashed red lines in figure) in effect have no nonlinear interactions,
and hence represent shoaling only. In the exact interactions (green solid lines)
energy is significantly spread in spectral space, resulting in a reduction of the
spectral peak energy level by a factor of nearly 2. The shallow water ’a’ and ’b’
approaches reproduce this reduction adequately. However, these approaches also
result in a spurious second spectral peak at lower frequencies. Hence, it remains
to be seen if this shallow water approach should be used in practical models.
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Fig. 4.19 : One-dimensional spectra F (f) for test test 13 at 3 m water depth
for (a) WW3X and (b) GMD1. Solid green; WRT. Dashed red: deep
water scaling only. Dotted magenta: deep and shallow water scaling.
Dotted blue: separate shallow water quadruplet.

4.5 Multi-component traditional quadruplet GMD

The next step is to introduce multiple representative quadruplets, as was done
in Part 2. The deep water experiments of the latter paper are reproduced in
Section 4.5.1. Additional experiments with sampling spectral space are discussed
in Section 4.5.2, and the corresponding shallow water optimization experiments
are presented in Section 4.5.3 through 4.5.5, and a summary of these experiments
is given in Section 4.5.6.

4.5.1 Deep water, increasing number of quadruplets

Following the experience gained in Part 2, experiments with a conventional
quadruplet definition and 2, 3 or 4 representative quadruplets are considered,
with the expectation that the latter experiments will show no gain in accuracy
compared to the experiments with 3 representative quadruplets. Population sizes
used are 125, 200 and 350, respectively, and the number of generations considered
are 40, 70 and 100, respectively. As expected, the experiment with 4 quadruplets
gained no more accuracy, hence the discussion will concentrate on models with 2
or 3 representative quadruplets only.

Figure 4.20 presents the evolution of the minimum and average errors for cases
with 2 or 3 representative quadruplets, and for three separate randomly chosen
initial conditions for each configuration. The relatively early stabilization of εmin

and εavg suggests that fewer generations could have been used. Furthermore,
not all three initial conditions result in the same ‘final’ errors. This may be
due either to the well-known fact that final convergence of genetic methods is
notoriously slow, or that distinctly different local optimal solutions in error space
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Fig. 4.20 : Like Fig. 4.16 optimizing λ and Cd using 2 representative quadru-
plets (panel a) or 3 representative quadruplets (panel b).

are found. An assessment can be made on which of the two reasons is responsible
for this behavior when the descent method is applied to the best solutions of
each genetic optimization experiment. Table 4.4 presents the optimum GMD
parameter settings for deep water parameters and tests corresponding to the six
optimization experiments from Fig. 4.20 after the steepest descent method was
applied to the best member of the last population in the genetic optimization.

Table 4.4 shows that for both the experiments with 2 or 3 representative
quadruplets (nq = 2 or 3) different initial conditions can result in different optimal
parameters settings. However, the fact that the experiments for nq = 2 (r)
and (g) result in essentially the same optimum parameter settings, as do the
experiments for nq = 3 (r) and (b) suggest that there are a limited number of
near-optimal solutions, and that the genetic optimization results in a reasonable
level of reproducibility.

An additional observation can be made from Fig. 4.20 and Table 4.4. For the
experiments with nq = 2 the red and green experiments result in the smallest
model errors and in essentially the same GMD settings as shown in Table 4.4.
However, Fig. 4.20a shows that the red experiment focused on poorer model
behavior than the green experiment. This apparently is a case where the red ex-
periment displays the difficulty of the genetic approach to effectively produce final
convergence, which in this case is remedied by the subsequent steepest descent
method. In contrast, the green experiment for the nq = 3 in Fig. 4.20b shows
the best genetic optimization results, which is also confirmed by the subsequent
steepest descent method (results presented in Table 4.4). Hence, for the exper-
iments with nq = 3, the different results for the green experiment in Fig. 4.20b
identifies that a different local optimum of the model errors in parameter space
has indeed been found. This again illustrates the strength of the method where
a genetic approach is used to find (multiple) near-optimum parameters settings,
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Table 4.4: Optimal GMD setting for traditional quadruplet layout and 2 or
3 deep water quadruplets based on deep water tests only. Genetic op-
timization followed by steepest descent. (r), (g), and (b) refers to red,
green and blue, respectively, in Fig. 4.20.

model λ Cd εtot (%)

nq = 2 (r) 0.127 4.12 107 16.5
0.280 1.91 107

nq = 2 (g) 0.127 4.09 107 16.5
0.279 1.95 107

nq = 2 (b) 0.181 3.51 107 16.9
0.318 9.43 106

nq = 3 (r) 0.066 5.80 107 16.0
0.184 4.32 107

0.318 1.43 107

nq = 3 (g) 0.126 4.79 107 15.7
0.237 2.20 107

0.319 1.10 107

nq = 3 (b) 0.066 5.63 107 16.0
0.184 4.33 107

0.318 1.44 107

which then can be used as starting point of a steepest descent method to eco-
nomically perform parameter optimization.

A synopsis of the optimization results in this section is given in Fig. 4.21,
which shows the optimum quadruplet (λ, Cd) settings for deep water for a GMD
with the traditional quadruplet definition and nq = 1 through 4 representative
quadruplets. Also shown in the figure are the optimum Cd for a given λ from
the mapping experiments with nq = 1 in Section 4.3 (dashed lines) and the
corresponding areas where such a GMD has errors less than 10, 20, 30 or 40%
more than the minimum model error.

As expected, the optimum setting for the GMD with nq = 1 (green symbol)
coincides with the optimum results from the mapping experiments. There are
clearly preferred settings of λ utilized by GMDs with different numbers of quadru-
plets. Moreover, optimum Cd settings for individual quadruplets for GMDs with
multiple quadruplets are similar to the corresponding optimum single quadruplet
GMD for the corresponding λ, but may differ by close to an order of magnitude.
This suggests that multiple DIAs are not simply an averaging of optimum single
DIAs, but in fact represent a more subtle interaction between quadruplets in a
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Fig. 4.21 : Synopsis of results of optimizing λ and Cd for deep water with
nq ranging from 1 to 4. Settings for optimum model only. Dashed
line represents optimum Cd for given λ from mapping experiments from
Section 4.3 for all deep water tests combined. Shaded areas depict areas
bounded by 10% increases from minimum εtot for nq = 1.

multiple DIA. Note that the GMD with four representative quadruplets does not
add accuracy compared to the one with three quadruplets. The “fourth” quadru-
plet with λ = 0.35 is significantly weaker with respect to the value of Cd than
expected from the single-component GMD (dashed line), which suggests that this
quadruplet contributes little to this GMD.

4.5.2 Deep water, sampling of spectral space

As mentioned in Section 4.2, the next attempt to optimize the GMD is to use the
quadruplet layout to sample spectral space, while optimizing the strength of the
representative quadruplet (Cd) only. Initial experiments with this optimization
approach showed that for several representative quadruplets Cd gravitated to its
lowest allowed value in Table 3.5. This suggests that the optimum solution for
such a quadruplet layout would be to not use it at all. To allow for this to
happen in the optimization approach, the genetic optimization procedure has
been modified slightly to allow for the quadruplet to be switched off by setting
Cd ≡ 0 if and only if the quadruplet layout (λ, µ, and ∆θ) are predefined, and
Cd drops below its minimum value allowed in Table 3.5. This switching off can
occur if the drift mutation drops Cd below this value, or in 5% of the cases of
re-initialization by mutation. Quadruplets are switched back on in the opposite
way, allowing shift mutation to start from Cd at its minimum value.
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Fig. 4.22 : Like Fig. 4.16 optimizing Cd only with λ preset to sample spectral
space with (a) 7 or (b) 13 quadruplets (see Tables 4.5 and 4.6).

One complication occurs if quadruplets are switched off, since this influences
the normalization factor n−1

q,d in Eq. (2.30), effectively rescaling the strength of
all quadruplets. To avoid that switching off one quadruplet effectively influences
all other quadruplets, the strength of all other quadruplets is rescaled so that
Cd/nq,d remains unchanged in Eq. (2.30). Experiments are performed with 7 or
13 quadruplets, as outlined in Tables 4.5 and 4.6. Population sizes are set to 300
and 500, respectively. For the first experiment, 50 generations have been used.
Based on error evolution of the first experiment, and considering the increasing
costs of the experiments, the second experiment was first conducted with 30
generations, and later expanded to 40. As before, the genetic optimization is
followed by a steepest descent algorithm.

Error convergence plots for both experiments are presented in Fig. 4.22. For
the experiment with 7 quadruplets (Fig. 4.22a), convergence of errors appears
to have been reached after approximately 25 generations, although some minor
improvement is seen in later generations. Final error behavior of the three sub-
experiments seems to be nearly identical, with the blue experiment reaching
optimum behavior somewhat faster that the red and green experiments.

The optimum results for the red, green and blue experiments with 7 con-
ventional quadruplets sampling spectral space are presented in Table 4.5 and
Fig. 4.23a. All experiments show that the optimum solution for some of the
pre-selected quadruplet layouts is to not use them at all. For the red and blue
experiments this is the case for the quadruplets with λ = 0.300 or 0.400. In the
green experiment, the quadruplet with λ = 0.400 is also switched off, whereas the
quadruplet with λ = 0.150 has an optimum setting that is several orders of mag-
nitude smaller than that of its neighbors, and therefore for practical purposes is
also switched off. With respect to the optimum settings of the other quadruplets,
the red and blue experiments also as generally similar, with the green experiment
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Table 4.5: Optimum Cd values for deep water optimization for 7 conventional
quadruplets sampling spectral space. iq represents the quadruplet num-
ber. Number of generations ng = 50.

experiment
iq λ (-) red green blue
1 0.100 7.07 107 9.09 107 5.49 107

2 0.150 1.98 107 2.97 105 3.36 107

3 0.200 6.23 106 3.87 107 1.84 106

4 0.250 3.96 107 2.81 107 3.96 107

5 0.300 — 4.90 106 —
6 0.350 1.00 107 1.20 107 1.02 107

7 0.400 — — —
εtot (%) 16.2 16.2 16.2

resulting in a distinctly different optimum setting. The resulting total errors εtot

differ by less than 0.02%, indicating that there are several optimum solutions
with near identical resulting total errors. For the red and blue experiments, the
resulting error is virtually identical (difference of 0.01%) and slightly better than
for the green experiment. For λ = 0.250 and 0.350 the red and blue experiments
show identical optimum settings, whereas for lower values of λ the results clearly
differ. This suggests that the behavior of the interactions is dominated by the
former λ, and is less sensitive to the latter. This is also consistent with the results
from the error mapping experiments. These indicate that dominant interactions
require larger Cd for smaller λ, inconsistent with the results of Table 4.5.

Note that the minimum errors of these experiments (εtot = 16.2%) are lower
than the optimum errors for two fully optimized quadruplets, but slightly larger
than for the three fully optimized quadruplets (16.5 and 15.7%, respectively, see
Table 4.4). Added complexity by considering more quadruplets therefor does not
appear to pay off, consistent with the experience of fully optimizing additional
quadruplets. Fixing λ rather than optimizing it dynamically results in 5 or 6
quadruplets, and hence a more expensive approximation than the approxima-
tion with three fully optimized quadruplets. At least for deep water, this added
complexity and computational costs cannot be justified based on the resulting
accuracy.

The optimum results for the red, green and blue experiments with 13 con-
ventional quadruplets sampling spectral space and using ng = 30 generations are
presented in Table 4.6 and Fig. 4.23b. As with the experiments with 7 quadru-
plets, various quadruplets are switched off by the optimization. Some are actu-
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Fig. 4.23 : Like Fig. 4.21 for approach with sampling spectral space with
either 7 (panel a) or 13 (panel b) quadruplets.

Table 4.6: Like Table 4.5 for 13 representative quadruplets. ng = 30

experiment
iq λ (-) red green blue
1 0.100 8.17 105 1.51 105 3.25 105

2 0.125 1.66 108 2.05 108 1.50 108

3 0.150 3.97 105 1.36 105 3.16 105

4 0.175 5.58 106 4.10 106 —
5 0.200 1.06 105 3.42 105 1.03 105

6 0.225 4.24 107 2.40 107 8.80 107

7 0.250 1.76 107 7.91 107 1.40 106

8 0.275 3.85 107 7.35 105 5.00 106

9 0.300 6.26 105 1.13 105 1.08 105

10 0.325 3.60 105 2.44 107 3.14 107

11 0.350 1.82 107 6.43 106 4.11 106

12 0.375 — 2.91 106 6.75 105

13 0.400 — 1.88 105 —
εtot (%) 15.922 16.003 15.932
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Table 4.7: Like Table 4.5 for 13 representative quadruplets. ng = 40

experiment
iq λ (-) red green blue
1 0.100 6.59 105 1.41 105 2.05 105

2 0.125 1.51 108 2.06 108 1.23 108

3 0.150 — 1.37 105 —
4 0.175 5.07 106 4.36 106 1.66 105

5 0.200 9.62 104 7.05 105 —
6 0.225 3.85 107 2.83 107 7.20 107

7 0.250 1.41 107 7.31 107 1.14 106

8 0.275 3.37 107 7.35 105 4.10 106

9 0.300 5.69 105 1.13 105 —
10 0.325 2.85 105 2.41 107 2.58 107

11 0.350 1.75 107 7.71 106 3.36 106

12 0.375 — 2.67 106 5.34 105

13 0.400 — 1.08 105 —
εtot (%) 15.911 15.986 15.930

ally switched off, some are effectively switched off by the resulting low values of
Cd. Many of the latter quadruplet strengths Cd are several orders of magnitude
smaller than expected based on the optimum Cd value for a GMD with only one
representative quadruplet, as is illustrated in Fig. 4.23b. Results in general follow
the results from the experiments with 7 equally spaced quadruplets. For some
values of λ, the red, green and blue experiments result in near identical solutions,
yet for others they are large enough to contribute, yet significantly different per
experiment, This again indicates that there is no clear “best” solution. As with
the previous experiment, the resulting total error of approximately 16% is no bet-
ter than the total error obtained with three fully optimized quadruplets, which
does not justify the use of this much more expensive approach.

The present expensive approach can be made cheaper by switching off quadru-
plets that do not contribute to the solution. To this end, two additional exper-
iments have been performed. First, the existing experiment was extended to
include 40 generations, to assess if additional optimization switches off addi-
tional quadruplets, or conversely, switches them back on. The resulting optimum
quadruplet settings for the red green and blue experiments are presented in Ta-
ble 4.7. Additional optimization indeed switches off a few more components, but
also leaves most components with very small Cd in the optimum settings. The lat-
ter could be expected based on the characteristics of the optimization procedure.
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Table 4.8: Like Table 4.5 reducing the number of quadruplets interactively
and re-optimizing by steepest decent only. the starting point is the red
experiment in Table 4.7.

iq λ (-) nq = 10 nq = 9 nq = 8 nq = 7 nq = 6 nq = 5
1 0.100 6.59 105 5.93 105 — — — —
2 0.125 1.51 108 1.36 108 1.21 108 1.06 108 9.09 107 7.84 107

3 0.150 — — — — — —
4 0.175 5.07 106 4.67 106 4.16 106 3.73 106 3.20 106 —
5 0.200 9.62 104 — — — — —
6 0.225 3.85 107 3.47 107 3.09 107 2.70 107 2.34 107 2.12 107

7 0.250 1.41 107 1.27 107 1.13 107 9.89 106 8.51 106 7.12 106

8 0.275 3.37 107 3.03 107 2.69 107 2.35 107 2.03 107 1.66 107

9 0.300 5.69 105 5.25 105 4.68 105 4.09 105 — —
10 0.325 2.85 105 2.57 105 2.28 105 — — —
11 0.350 1.75 107 1.57 107 1.40 107 1.25 107 1.08 107 9.00 106

12 0.375 — — — — — —
13 0.400 — — — — — —

εtot (%) 15.911 15.911 15.910 15.908 15.905 15.905

If such quadruplets do not contribute to the solution, changing them (including
switching them off) will not improve the solution, and hence will not be identified
as a better solution by the genetic optimization algorithms. Alternatively, weak
quadruplets can be switched off by hand, while rescaling the remaining quadru-
plets to conserve Cd/nq,d, and followed by a steepest descent method to obtain
a new optimum solution. If the quadruplet could be switched off safely, there
will be no notable change in the resulting total model error. Results of such an
experiment are presented in Table 4.8 and Fig. 4.24.

The strategy to remove quadruplets from this configuration is using the dis-
tance of the strength Cd compared to the optimum setting for a single component
GMD (dashed line) in Fig. 4.24. The corresponding order of quadruplets to be
removed is iq = 5, 1, 10, 9 and 4, to reduce the number of active quadruplets
from 10 out of 13 to 5 out of 13. The corresponding total model errors εtot as re-
optimization can be found in Table 4.8. Each quadruplet is disabled by removing
it altogether, reducing nq,d in Eq. (2.30). Because the effective magnitude of all
remaining quadruplets is Cd/nq,d, this effectively increases the effective strength
of each quadruplet by

nq,d,old

nq,d

=
nq,d + 1

nq,d

, (4.1)

89



λ (−)

C
d

(−)

10
 9
 8
 7
 6
 5

0.1 0.2 0.3 0.4
10

5

10
6

10
7

10
8

10
9

Fig. 4.24 : Like Fig. 4.21 reducing the number of active quadruplets in the
‘red’ experiment sampling spectral space starting with nq = 13. Legend
identifies number of active quadruplets. See also Table 4.8.

where nq,d represents the new number of quadruplets, which here is one less
than the old number. To ensure that the removal of quadruplets with negligible
strength does not change results, all remaining strengths Cd need to be reduced
by the factor in (4.1).

The successive removal of quadruplets with negligible strength down to nq = 5
does have little impact on the errors of the GMD, provided that the the remaining
components are rescaled. Subsequent optimization using steepest descent meth-
ods generally results in slightly better model behavior, as is shown in Table 4.8.
Changes in Cd while reducing nq (= nq,d) are dominated by the rescaling, as
is particularly clear in Fig. 4.24. With nq = 5, all remaining quadruplets have
strengths close to those expected based on optimization of a model with nq = 1,
and hence no clear path to removal of additional quadruplets is available. Note
that the results with 5 quadruplets remaining are comparable to the result ob-
tained from full optimization of quadruplets as shown in Fig. 4.21, and that the
remaining errors (15.9%) are compatable with the optimum results for nq = 3
with full quadruplet optimization (15.7%). Considering this, the added com-
putational effort for the sampling approach with nq = 5 quadruplets remaining
cannot be justified based on deep water only. It does, however, represent a more
controlled optimization environment, which will be useful to explore in shallow
water also.
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Table 4.9: Overall errors in % for each test case for the GMD configurations
in Tables 4.2 (GMD1) and 4.4 (GMD2, nq = 2 red; GMD3, nq = 3
green). Cs ≡ 0 and m = 0 for all experiments.

test case
01 02 03 04 05 06 11 12 13 tot

WW3X 27.4 27.7 22.5 25.1 26.5 29.8 24.6 29.4 83.5 32.9
GMD1 22.2 21.7 19.1 20.4 20.5 23.1 21.1 28.3 83.3 28.8
GMD2 16.9 15.6 15.1 16.5 16.1 19.0 17.1 22.2 103.7 26.9

(m = −6.87) 17.0 24.0 83.2 24.8
GMD3 15.2 14.6 15.1 17.1 15.0 17.3 16.1 21.6 97.3 25.5

(m = −5.07) 16.0 23.0 82.3 24.0
snl ≡ 0 83.6

4.5.3 Shallow water, deep water quadruplets

The next step is to optimize the GMD based solely on the traditional quadruplet
for shallow water, but with multiple representative quadruplets. Starting points
will be the two- and three-quadruplet results from the red and green experiments
in Table 4.4, respectively. First, the behavior of a pure deep-water setup in
shallow water tests will be addressed, to provide a baseline, and to look at the
impact of choosing the value of m in the deep water scaling. Results for such
GMDs with nq = 1, 2 and 3, m = 0 and Cs ≡ 0 are presented in Table 4.9.

With increasing complexity and optimization of the GMD, i.e., going down in
Table 4.9, it is expected that errors are systematically reduced. this indeed is the
case for the total error, and for the errors of nearly all individual tests. However, it
is not the case for the shallow water swell propagation test test 13. For this test,
configurations GMD2 and GMD3 have significantly larger errors than WW3X
and GMD1, with the latter two tests resulting in errors nearly identical to those
obtained by ignoring Snl (last line in the table). Spectra at shallow water for
this test (Fig. 4.25a) are virtually identical, and do not account for the increase
in error. Close inspection of errors for all parameters shows that the increased
error is due to errors in the nonlinear interactions at the deeper water near the
offshore boundary of the model (Fig. 4.25b). Since this error is fairly irrelevant
for the resulting spectral shape, it could be ignored by reducing the weight for
this error parameter for this test. However, one of the ideas behind full holistic
optimization is that all errors are accounted for, including these, hence it is worth
while to assess if this error can be reduced by optimizing m.

Optimization of m for the GMD2 and GMD3 model setup were performed
using a simple genetic optimization with a population size of 20 and 5 generations.
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Fig. 4.25 : (a) One-dimensional spectra F (f) at 3 m water depth and (b)
source terms snl(f) at 40 m water depth for test test 13. Solid green:
WRT. Solid red: Snl ≡ 0. Dashed blue: GMD1. Dashed magenta:
GMD2. Dotted magenta: GMD3.
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Fig. 4.26 : Like Fig. 4.25 for optimized m in GMD2 and GMD3,

Considering that Snl needs to be suppressed further for intermediate depths,
values of m ∈ [−8, 4] are allowed, well out of the expected range of this parameter
(i.e., m ∈ [0, 8]). The resulting values of m are presented in Table 4.9, together
with the resulting shallow water test errors, and composite errors. Note that the
deep water test errors for these model settings are not repeated, since they are
independent of the choice of m. Optimization of m indeed dramatically improves
the errors of the swell propagation test test 13, even improving upon the results
obtained by ignoring Snl altogether. Note that this improvement comes at the
expense of a slight degradation in the performance for the test with wind seas
on a beach (test 12). Nonlinear interactions at the deeper part of the domain
improve dramatically (see Fig. 4.26).

Considering the above, both Cs and m will need to be optimized for the GMD
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Fig. 4.27 : Like Fig. 4.16 for adding optimal shallow water scaling to previ-
ously optimized deep water configurations for cases with (a) two quadru-
plets (nq = 2) or (b) three quadruplets (nq = 3). Quadruplets and
resulting constants are presented in Tables 4.10 and 4.11.

Table 4.10: Optimal GMD setting for traditional quadruplet layout and two
deep water quadruplets, adding shallow water scaling to deep water
quadruplets, using shallow water tests only. (r), (g), and (b) refers to
red, green and blue, respectively, in Fig. 4.27. n = −3.5

model λ Cd Cs m εtot (%)

GMD2 0.127 4.12 107 — -6.87 41.4
0.280 1.91 107 —

nq = 2 (r) 0.127 4.12 107 6.31 104 -10.21 37.6
0.280 1.91 107 4.74 105

nq = 2 (g) 0.127 4.12 107 6.01 104 -10.27 37.6
0.280 1.91 107 4.69 105

nq = 2 (b) 0.127 4.12 107 6.42 104 -10.26 37.6
0.280 1.91 107 4.61 105
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Table 4.11: Like Table 4.10 for GMD with three representative quadruplets.

model λ Cd Cs m εtot (%)

GMD3 0.126 4.79 107 — -5.07 40.4
0.237 2.20 107 —
0.319 1.10 107 —

nq = 3 (r) 0.126 4.79 107 7.80 104 -7.60 36.8
0.237 2.20 107 4.16 105

0.319 1.10 107 3.87 105

nq = 3 (g) 0.126 4.79 107 6.64 104 -7.10 36.8
0.237 2.20 107 5.16 105

0.319 1.10 107 2.80 105

nq = 3 (b) 0.126 4.79 107 6.53 104 -7.29 36.8
0.237 2.20 107 6.27 105

0.319 1.10 107 5.00 104

with ng = 2 or 3. Population sizes are set to 50 and 75, respectively, considering
7 and 12 generations. Error evolutions of these experiments are presented in
Fig. 4.27, and optimum parameter settings and resulting errors are presented in
Tables 4.10 and 4.11.

For the experiments with 2 representative quadruplets, 7 generations appear
only borderline sufficient (Fig. 4.27a), but the corresponding final configurations
after descent optimization are essentially identical. Note that the optimum values
for m after descent optimization in Table 4.10 are smaller than allowed in the
genetic optimization. For the experiments with 3 representative quadruplets, 12
generations appear sufficient (Fig. 4.27b). Results after descent optimization are
similar for the red and green experiments, but somewhat different for the blue
experiments (Table 4.12). All experiments have similar resulting errors, with the
green experiment having marginally smaller errors. Note that in this case values
of m remained in the preset range for the generic optimization.

The optimized GMDs presented in this section show a clearly reduced error
for the shallow water test cases compared to the previously optimized GMDs.
Considering that the latter GMDs showed aphysical behavior for swell spectra
in shallow water for test test 13, it is prudent to consider these conditions for
present optimized parameterizations too. The corresponding shallow water spec-
tra and source terms are presented in Fig. 4.28 a and b, respectively. The two
optimized GMDs presented here show the same spurious spectral peak at low
frequencies, and a corresponding signature in the nonlinear interactions, albeit
less pronounced than in previously optimized shallow water GMDs.
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Fig. 4.28 : (a) One-dimensional spectra F (f) for test test 13 at 3 m water
depth and (b) corresponding nonlinear interactions snl(f) for results of
Tables 4.10 and 4.11. green solid line: WRT. red solid line: no Snl. blue
dashed line: nq = 2 (green exp.). blue dotted nq = 3 (green exp.).

4.5.4 Shallow water, separate quadruplets

The next step is to add separate shallow water quadruplets, optimizing both
λ and Cs. Following the practice of the previous paragraph, m is optimized
simultaneously. This still leaves many possible model configurations, since any
number of shallow water quadruplets can be added to the pre-selected number of
deep water quadruplets. To limit the number of configurations to be optimized,
only configurations with two (three) shallow water quadruplets added to two
(three) deep water quadruplets are considered here. Note that the saturation with
respect to numbers of shallow water quadruplets will be assessed when considering
sampling of spectral space in the following section. As in previous experiments,
three initial conditions are considered per experiment. The experiments with
’2+2’ or ’3+3’ quadruplets consider populations with 125 and 175 members,
and 20 and 25 generations, respectively. Error convergence plots are presented in
Fig. 4.29, and resulting quadruplets and total (shallow water) errors are presented
in Tables 4.12 and 4.13.

For both experiments, the error plots in Fig 4.29 suggest reasonable conver-
gence for the optimization experiments. Both experiments, however, indicate
that there are multiple near-optimal solutions, with the smallest minimum er-
rors found in the green and blue experiments respectively (Tables 4.12 and 4.13.
As in the previous section, the value of m for the ’2+2’ experiments is brought
out of the range accepted in the genetic optimization by the steepest descent
optimization, whereas the value for the ’3+3’ remains in this range. For both
sets of experiments, fully optimizing the shallow water quadruplet reduces the
overall error for shallow water tests by approximately 0.4%, compared to the
corresponding experiments where only Cs was optimized.
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Fig. 4.29 : Like Fig. 4.16 for adding optimal shallow water quadruplets to
previously optimized deep water quadruplets for cases with (a) 2+2
quadruplets (nq = 4) or (b) 3+3 quadruplets (nq = 6). Quadruplets
and resulting constants are presented in Tables 4.12 and 4.13.

Table 4.12: Optimal GMD setting for traditional quadruplet layout and 2
deep water quadruplets, adding 2 shallow water quadruplets, based on
shallow water tests only. Genetic optimization followed by steepest de-
scent.(r), (g), and (b) refers to red, green and blue, respectively, in
Fig. 4.29. n = −3.5. Deep water quadruplets are identical for all con-
figurations, and are presented only for first configuration.

model λ Cd Cs m εtot (%)

nq = 4 (r) 0.127 4.12 107 — -9.65 37.4
0.280 1.91 107 —
0.079 — 3.61 104

0.237 — 5.06 105

nq = 4 (g) 0.184 — 2.81 105 -9.88 37.3
0.376 — 4.03 105

nq = 4 (b) 0.184 — 2.79 10n -9.80 37.3
0.375 — 4.07 10n
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Table 4.13: Like Table 4.12 for three deep water quadruplets adding three
shallow water quadruplets.

model λ Cd Cs m εtot (%)

nq = 6 (r) 0.126 4.79 107 — -7.47 36.4
0.237 2.20 107 —
0.319 1.10 107 —
0.020 — 1.65 105

0.184 — 3.91 105

0.373 — 6.72 105

nq = 6 (g) 0.023 — 1.31 105 -7.50 36.4
0.184 — 3.85 105

0.375 — 6.21 105

nq = 6 (b) 0.048 — 4.61 104 -7.50 36.3
0.184 — 3.64 105

0.373 — 6.65 105

Considering that the previous shallow water optimization experiments re-
sulted in spurious spectral peaks at low frequencies for the swell experiment
test 13, this test is addressed in some more detail here in Fig. 4.30. Both op-
timized configurations from this section do show a spurious low-frequency peak
in the swell spectra in shallow water, albeit much less pronounced than for the
single component GMD1, and shifted compared to the 2 and 3 component GMDs
from the previous section (compare Fig 4.28 to Fig 4.19 on page 81).

4.5.5 Shallow water, sampling of spectral space

The final attempt to optimize the GMD based on the traditional quadruplet
definition of the DIA will consider sampling of spectral space with preset values
of λ. Considering the results of such an optimization experiment for deep water
only (Section 4.5.2), only the “high-resolution” case with 13 quadruplets will be
considered, and for this experiment consecutive switching off of components with
low strength will be considered. A quick initial optimization experiment with 20
population members and 5 generations resulted in a optimum value of m = −4.96
and suggests that m should be optimized together with the values of Cs as in the
previous sections.

Initial optimization experiments by sampling spectral space start with the
deep water setup with nq,d = 5 from Table 4.8, while optimizing all 13 values of
Cs and a single value for m. As before, three sets of initial conditions are used.
The population size was set to 400, and initially 20 generations were considered.
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Fig. 4.30 : Like Fig. 4.28 for separate deep and shallow water quadruplets
(green and blue experiments, respectively).
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Fig. 4.31 : Like Fig. 4.16 for adding optimal shallow water scaling to 13
quadruplets sampling spectral space. Quadruplets and resulting con-
stants are presented in Table 4.14.

The error evolution is presented in Fig. 4.31. Based on this figure, 20 generations
appear adequate, which is confirmed by the small corrections made by the descent
algorithm. In fact, the major contribution of the descent algorithm is to switch off
many of the quadruplets with small Cs as obtained from the genetic optimization.

The resulting quadruplet configurations for the three experiments (after ge-
netic and descent optimization) are presented in Table 4.14 and Fig. 4.32a. Again,
many pre-selected quadruplets are disabled by the optimization procedure. Note
that in this case, the genetic optimization resulted in small Cs, whereas the de-
scent optimization switched most of these quadruplets off in the red experiments,
but left many switched on in the green and blue experiments. As in deep water
experiments, non-contributing quadruplets have been switched off, after which
model errors were recalculated (without further descent optimization). The lat-
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Table 4.14: Optimum Cs and m values for shallow water optimization for 13
conventional quadruplets sampling spectral space. Deep water settings
from Table 4.8, with nq = 5. iq represents the quadruplet number.
Number of generations ng = 20.

Cs from experiment
iq λ (-) Cd red green blue
1 0.100 — 5.95 104 1.79 105 1.05 105

2 0.125 7.84 107 — — —
3 0.150 — — 3.16 104 —
4 0.175 — — 1.11 103 2.65 104

5 0.200 — 7.85 105 4.64 105 1.23 106

6 0.225 2.12 107 — 2.63 104 3.26 104

7 0.250 7.12 106 — 1.62 106 —
8 0.275 1.66 107 — 1.97 105 8.08 103

9 0.300 — —- 3.57 103 1.24 104

10 0.325 — 5.03 103 2.51 103 1.66 105

11 0.350 9.00 106 4.22 105 1.26 105 8.50 104

12 0.375 — 6.05 105 2.10 103 6.02 105

13 0.400 — 2.21 105 8.10 105 1.39 106

m (-) -7.41 -7.29 -7.43
εtot (%) 36.568 36.616 36.581

ter results are presented in Table 4.15 and Fig. 4.32b, suggesting that only 5 or 6
of the thirteen quadruplet configurations contribute to the shallow water perfor-
mance of the GMD. Comparison of total errors presented in Tables 4.14 and 4.15
strongly indicate that the removed weak quadruplets indeed do not contribute to
this GMD parameterization.

A comparison of the tables and figure panels suggest that the resulting red
and blue configurations are similar, with a distinctly different green configuration,
but all result in similar total errors. Because configurations are different, and
because the spurious peaks in the swell spectra for test 13 only contribute to
one of many error measures considered, it is interesting to check the resulting
spectra and source terms for all three configurations. Some resulting spectra and
source terms are presented in Fig. 4.33. Indeed, the green experiment produces
notably different spectra and source terms than the red and blue experiments.
The differences are most pronounced in the representation of the spurious spectral
peak for low frequencies, which is much more pronounced in the green experiment,
but also shows differences between the red and blue experiments. Note that for
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Table 4.15: Like Table 4.14 after removal of non-contributing quadruplets
and additional descent optimization.

Cs from experiment
iq λ (-) Cd red green blue
1 0.100 — 4.96 104 8.95 104 6.30 104

2 0.125 7.84 107 — — —
3 0.150 — — — —
4 0.175 — — — —
5 0.200 — 6.54 105 2.32 105 7.38 105

6 0.225 2.12 107 — — —
7 0.250 7.12 106 — 8.10 105 —
8 0.275 1.66 107 — 9.85 104 —
9 0.300 — — — —
10 0.325 — — — 9.96 104

11 0.350 9.00 106 3.52 105 6.30 104 5.10 104

12 0.375 — 5.04 105 — 3.61 105

13 0.400 — 1.84 105 4.05 105 8.34 105

m (-) -7.41 -7.29 -7.43
εtot (%) 36.568 36.617 36.578
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Fig. 4.32 : Synopsis of results of optimizing Cs while sampling spectral space
with 13 quadruplets and deep water settings from Table 4.8 with nq = 5.
Dashed line represents optimum Cs for given λ from mapping experi-
ments from Section 4.3 for all shallow water tests combined. Shaded
areas depict areas bounded by 10% increases from minimum εtot for
nq = 1. (a) original optimization. (b) After removal of non-contributing
quadruplets.
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Fig. 4.33 : (a) One-dimensional spectra F (f) for test test 13 at 3 m water
depth and (b) corresponding nonlinear interactions snl(f) for results of
Table 4.15. Black solid line: WRT. Other colors correspond to experi-
ment in the Table.

shallow water, sampling of spectral space does appear to be able to suppress
spurious spectral peaks, although they still appear at the shallowest depths in
the test case (not presented here).

4.5.6 Summary

In Sections 4.4 and 4.5 a GMD with the traditional quadruplet layout of the
DIA has been optimized using one or more representative quadruplets. The
optimization has been performed either by optimizing the full quadruplet layout,
or by predetermining the sampling of spectral space by predefining a number
of quadruplets with given λ. The experiments indicate that not much accuracy
is gained by adding more than 3 or 4 fully optimized quadruplets, and that
when sampling spectral space, no more than 5 deep water and 6 shallow water
quadruplets contribute to the accuracy of the model, with different quadruplets
contributing to deep and shallow water, respectively. A synopsis of the errors for
various optimized GMDs with increasing complexity is presented in Table 4.16.

Adding quadruplets (going from GMD to GMD3) systematically reduces the
errors for the deep water tests. Sampling of the spectral space (GS13), results
in errors comparable to those of GMD3, but shows no further improvement.
Total errors per test are reduced by typically 40% compared to the standard
DIA approach from the WAVEWATCH III model (WW3X). For shallow water,
test 11 and test 12 show a significant benefit from better deep water behavior of
the corresponding GMD, suggesting the obvious conclusion that accurate shallow
water modeling requires accurate deep water modeling. For the pure swell case of
test 13, boundary conditions are predefined, and errors are much less impacted by
deep water behavior of the model, although intermediate water depth behavior
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Table 4.16: Synopsis of errors in % for optimized configurations for the GMD
configurations with traditional quadruplet layout. GMD1 : nq = 1 for
deep water only, GMD1s : nq = 1 for deep and shallow water, GMD1s1
: nq = 1 + 1, etc. GMD1 with m = 0, others with optimized m. GS13
refers to sampling spectral space with 13 quadruplets.

test case
01 02 03 04 05 06 11 12 13 tot

WW3X 27.4 27.7 22.5 25.1 26.5 29.8 24.6 29.4 83.5 32.9
GMD1 22.2 21.7 19.1 20.4 20.5 23.1 21.1 28.3 83.3 28.8
GMD1s 21.1 29.9 74.3 28.0
GMD1s1 21.1 28.8 72.0 27.7
GMD2 16.9 15.6 15.1 16.5 16.1 19.0 17.0 24.0 83.2 24.8
GMD2s 17.2 23.8 71.6 23.5
GMD2s2 17.2 23.8 70.9 23.5
GMD3 15.2 14.6 15.1 17.1 15.0 17.3 16.0 23.0 82.3 24.0
GMD3s 16.0 22.6 72.3 22.8
GMD3s3 16.2 23.1 69.9 22.6
GS13 15.1 14.7 15.5 18.0 15.0 17.1 15.8 23.1 82.4 24.1
GS13s(b) 16.0 23.1 70.7 22.8

governed by the scaling constant m has some impact here. Apparently, accurate
description of effects of nonlinear interactions on swell in shallow water represent
the most difficult conditions for a GMD based on the traditional quadruplet to
represent, considering the moderate improvements of the errors for this test, and
considering the spurious model behavior for this test case as discussed above.

A synopsis of the resulting quadruplets is presented in Fig. 4.34. For deep wa-
ter, the configurations with multiple representative quadruplets result in quadru-
plet strengths Cd for the corresponding layout parameter λ (symbols in figure)
that are relatively close to the optimal value for Cd for a single given λ (dashed
line and shaded areas in figure, well within an order of magnitude difference).

The impact of the optimization with increasingly complex GMD configura-
tions has been assessed by inspecting results for all test parameters for all test
cases. The results are illustrated here with selected test cases only. In general,
increasing complexity of the GMD will lead to increasing accuracy. However,
results for tests evolving in either space or time do differ. Figures 4.35 and 4.36
show mean wave parameters for tests test 05 and test 06, respectively, to illustrate
these differences.

The traditional DIA as used in the default wave model settings (WW3X)
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Fig. 4.34 : Synopsis of results of (a) optimizing λ and Cd for deep water or
(b) optimizing λ and Cs for shallow water. Dashed line represents opti-
mum Cd or Csfor given λ from mapping experiments from Section 4.3.
Shaded areas depict areas bounded by (a) 10% and (b) 1% increases
from minimum εtot for nq = 1.
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Fig. 4.35 : Evolution in time of a) significant wave height Hs, b) peak fre-
quency fp, c) mean direction θ, and d) directional spread σθ for the
slanting fetch test test 05. Green line: WRT. Red line: WW3. Dotted /
dashed / solid blue lines: GMD1 / GMD2 / GMD3. Purple line GS13.
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Fig. 4.36 : Like Fig. 4.35 for wave growth with swell test test 06.

represents the wave height Hs accurately at the expense of the representation of
the peak frequency fp. The corresponding optimized GMD (GMD1) improves
the representation of the fp at the expense of the representation of Hs. Adding
complexity (GMD2, GMD3, GS13) results in an accurate description of the peak
frequency fp for both wave evolution in space and time. The wave height evolution
in space (Fig. 4.35a) also becomes accurate, but the wave height evolution in time
(Fig. 4.36a) remains systematically underestimated. The directional spread (σθ)
shows similar systematic improvement with increasing complexity of thee GMD,
with only small remaining errors. The exception is the inability of these GMD
parameterizations to reproduce the systematic directional widening of the swell
in Fig. 4.36d. The description of the mean direction in cases where the direction
actually changes is systematically improved with increasing complexity of the
GMD, but also has notable remaining errors. For spectral parameters, increasing
complexity of the GMD leads to increasing accuracy as is illustrated in Fig. 4.37.
However, clear errors remain particularly in the one-dimensional spectra and
source term (panels a, b, e and f).

In shallow water, errors for tests including wind seas are dominated by the
‘deep water’ errors of the model. This is illustrated here with the wave height and
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Fig. 4.37 : One-dimensional spectral quantities after 6 h of model integration
for test test 03 a) energy spectrum F (f), b) steepness spectrum G(f),
c) mean direction θ(f), d) directional spread σθ(f), e) nonlinear interac-
tions snl(f), f) nonlinear energy flux M(f), Legend as in Fig. 4.35. All
variables normalized with the absolute maximum of the WRT results.
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Fig. 4.38 : Evolution in time of a) significant wave height Hs and b) relative
depth kpd for wind sea on beach test test 12. Legend as in Fig. 4.35.
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relative depth evolution for test 12 in Fig. 4.38. Issues with spectral shapes for the
swell case have already been discussed in previous sections. Note that for test 11

the exact interactions generate dual-peaked spectra in the most shallow water
depth. Such spectra are not reproduced by any of the new parameterizations.

In spite of the large volume of optimization work presented so far, only a small
part of possible optimization approaches and details have been addressed. Some
of these concern the (exploratory) shallow water optimization, for instance

• Figure 4.34b shows that that sampling spectral space results in a signif-
icant contribution for the smallest λ in the sampling. This λ, however,
is significantly larger than some freely optimized λ values. This suggests
that better results may be obtained if smaller values for λ are used when
sampling spectral space for shallow water optimization.

• It may be worth while to add the shallow water swell test case test 13 to
the deep water optimization to consider accuracy of swell for interactions
for intermediate water depths.

• Good results might be obtained with full optimization for deep water, com-
bined with sampling for shallow water, or by using a different number of
shallow water and deep water representative quadruplets.

Some of these observations will be used in the following sections, others will be
left for future research.

4.6 Multi-component expanded quadruplet GMD

The next step of this study is to consider more complex definitions of the quadru-
plet. In Tolman (2003, 2004, 2005) and Tolman and Krasnopolsky (2004) it has
been noted that such quadruplets by themselves do not result in stable model
integration, unless multiple representative quadruplets are used. For this reason,
the present optimization will start with three representative quadruplets.

The two-parameter (λ, µ) and three parameter (λ, µ, ∆θ) definitions of the
quadruplet introduce more free parameters in the optimization, and hence require
larger populations and/or numbers of generations. For this reason, the optimiza-
tion of such parameters will be more selective than for the classic quadruplet
layout in the previous section. Considering the saturation behavior in the previ-
ous section, and the fact that sampling spectral space did not add to accuracy,
combined with the additional difficulty of setting sampling strategies for a multi-
dimensional parameter space, only full parameter optimization for an increasing
number of quadruplets will be considered in this section.
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Table 4.17: Population sizes (npop) and number of generations (ngen) for
deep water optimization using two (λ, µ) and three parameter (λ, µ, ∆θ)
quadruplet definition and number of representative quadruplets (nq).
Size of initial population in parenthesizes if different from general pop-
ulation size.

(λ, µ) (λ, µ, ∆θ)
nq npop ngen npop ngen

3 350 45 600 (1200) 60
4 500 60 1200 (2400) 60
5 600 60 1500 (3000) 90
6 750 60 2000 (4000) 150
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Fig. 4.39 : Minimum errors (εmin, solid lines) and average errors for fittest
half of population (εavg, dashed lines) as a function of the generation
for optimization experiments (identified by color) for deep water with
the two-parameter quadruplet definition. (a) Number of quadruplets
nq = 3. (b) nq = 4. (c) nq = 5. (d) nq = 6.
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4.6.1 Deep water, increasing number of quadruplets

In this section, two and three parameter quadruplet definitions will be optimized
for deep water, with three to six representative quadruplets. For each optimiza-
tion attempt, three different initial conditions will be considered. As in previous
sections, these experiments will be denoted as the red, green and blue experi-
ments. Population sizes and number of generations considered are presented in
Table 4.17. As before, genetic optimization is augmented with steepest descent
optimization for the best performing member of the last generation. First, results
for the two-parameter quadruplet definition will be presented and discussed.

Figure 4.39 shows the error evolution as a function of the generation for
the four sets of three experiments for the two-parameter quadruplet definition.
Corresponding best quadruplets and lowest errors are presented in Tables 4.18
through 4.21. As before, increasing the number of quadruplets systematically
improves the quality of the GMD, with apparent diminishing return for increasing
numbers of quadruplets. Unlike with the experiments with the one-parameter
quadruplet, introducing nq = 6 quadruplets still shows some improvement relative
to the experiments with nq = 5. Hence, no plateau with respect to benefit of
additional quadruplets seems to have been reached yet. The only exception to
this observation is that for the red experiment with nq = 6 the third quadruplet
has an anomalously small Cd, and hence could effectively be considered as turned
off.

Compared to the error evolution for the optimization of the one-parameter
quadruplet in the previous sections, Fig. 4.39 show more erratic optimization
behavior, in particular with respect to consistency between the red blue and green
experiments for each separate configuration (i.e., nq). For the experiments with
nq = 3 the red and blue experiments effectively result in the same optimum GMD,
giving some confidence that this indeed may be a good solution, and possibly close
to the global optimal solution. For all other configurations, the three optimum
solutions show clearly different configurations, giving less confidence that the best
of these indeed is close to the global optimum solution. This more erratic behavior
indicates that the setup of the genetic optimization needs to be improved. This
has been addressed for the three-parameter quadruplet definition below.

Several other observations can be made from the experiments with the two
parameter quadruplet definition. First, the optimization naturally selects one-
parameter quadruplets where appropriate. Particularly striking is that all three
experiments with nq = 3 results in an optimum solution with a one-parameter
quadruplet with λ ≈ 0.14. Second, as already observed above, the experiments
with nq = 6 start to display some “degenerate” behavior. One of the resulting
quadruplets for the red experiment is effectively switched off, and for the green
experiment two quadruplets have near identical λ (but different µ). Third, for
all individual experiments presented here, the steepest descent approach applied
to the best guess from the genetic optimization resulted in small improvements
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Table 4.18: Optimal GMD setting for two-parameter quadruplet layout and
three deep water quadruplets based on deep water tests only. Genetic
optimization followed by steepest descent.(r), (g), and (b) refers to red,
green and blue experiments.

experiment λ µ Cd εtot (%)

red 0.136 — 3.06 107 13.59
0.208 0.135 7.39 107

0.345 0.101 1.10 107

green 0.143 — 3.21 107 14.16
0.237 0.126 4.65 107

0.346 0.075 8.49 106

blue 0.137 — 3.04 107 13.58
0.208 0.137 7.91 107

0.347 0.097 1.05 107

Table 4.19: Like Fig. 4.18 for nq = 4.

experiment λ µ Cd εtot (%)

red 0.066 0.025 2.78 108 13.16
0.215 0.082 7.19 107

0.279 0.222 2.04 107

0.352 0.075 9.73 106

green 0.111 0.089 2.77 108 11.89
0.130 — 3.63 107

0.230 0.118 5.27 107

0.349 0.109 1.34 107

blue 0.065 0.014 8.78 107 12.66
0.115 0.090 1.95 108

0.184 0.066 6.28 107

0.310 0.127 3.28 107
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Table 4.20: Like Fig. 4.18 for nq = 5.

experiment λ µ Cd εtot (%)

red 0.127 — 4.11 107 12.00
0.172 0.126 1.31 108

0.237 — 2.45 107

0.245 0.184 2.20 107

0.348 0.116 1.72 107

green 0.068 0.015 6.39 107 11.01
0.115 0.077 3.58 108

0.192 0.125 4.35 107

0.248 0.066 3.23 107

0.349 0.145 1.87 107

blue 0.126 — 3.87 107 12.78
0.195 0.074 6.61 107

0.224 0.184 5.52 107

0.320 0.124 2.55 107

0.399 — 1.74 106

only. Combined with the clearly different optimization results for the experiments
for each given nq, this clearly indicates that for the more complex quadruplet
definitions many local minima for model errors exist in parameter space, clearly
indicating that the genetic optimization approach is far superior to the descent
approach. Fourth, an anomalously large impact of the final descent algorithm was
found for the blue experiment with nq = 6. After genetic optimization only, this
experiment produced the poorest performing GMD. The descent optimization,
however, reduced the error by another 1.5%, producing the best GMD of the
three eperiments.

The next step is to optimize GMDs based on the three-parameter quadruplet
definition. Initial experiments with this configuration saw the erratic behavior
per configuration increase up to a level that the three-parameter configurations in
some cases did not outperform the corresponding two-parameter configurations.
Because the three-parameter configuration can reproduce the two-parameter con-
figuration exactly, this is a clear indication that these initial optimizations did
not perform as expected, and that some additional assessment of the setup of the
genetic optimization was needed.

For the initial experiments with the three-parameter quadruplet definition
and nq = 3 (Fig. 4.40a and Table 4.22), initial experiments with a population
with 600 members could not outperform the corresponding model setup with the
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Table 4.21: Like Fig. 4.18 for nq = 6.

experiment λ µ Cd εtot (%)

red 0.098 — 5.27 107 11.47
0.123 0.092 4.43 108

0.182 0.120 8.75 105

0.232 0.068 5.47 107

0.328 0.145 2.54 107

0.383 — 2.37 106

green 0.069 0.045 7.41 108 10.97
0.183 0.002 5.39 107

0.232 0.147 5.95 107

0.233 0.064 1.22 107

0.278 0.237 1.44 107

0.351 0.110 1.92 107

blue 0.059 0.026 2.59 108 10.78
0.132 0.080 2.60 108

0.227 0.127 6.30 107

0.279 — 1.36 107

0.351 0.219 1.47 107

0.359 0.070 7.03 106

two-parameter quadruplet definition. Close inspection of the initial population
showed that only a small fraction of the randomly selected initial population
produced viable results. Tentatively, this suppresses (viable) diversity in the
initial generation. This can be remedied be taking a larger initial population,
and reducing the size of the initial population to the target population size after
initial sorting of the population, but before the second population is generated.

Doubling the size of the initial population indeed resulted in significantly
better GMD configurations. Making initial populations even larger resulted in
poorer optimization results, which can tentatively be attributed to the fact that
this would suppress non-viable configurations to a level that the population diver-
sity encapsulated therein was suppressed too much. Figure 4.40a and Table 4.22
show that with this approach two near-identical optimum solutions are found (red
and green), whereas the blue solution degenerates to a one-parameter quadruplet
dominated configuration from which the genetic optimization cannot reach more
accurate configurations in the 60 generations considered.

Initial experiments to optimize the GMD with the three-parameter quadruplet
definition and nq = 4 were performed with a population size of 800 (1600 for
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Fig. 4.40 : Like Fig. 4.39 for the three-parameter quadruplet definition. (a)
Number of quadruplets nq = 3. (b) nq = 4.(c) nq = 5. (d) nq = 6.

initial population and up to 90 generations. This again lead to an unexpected
large difference in results from the red, green and blue experiments. Additional
experiments suggest that this population size did not support sufficient diversity.
Increasing the population size as indicated in Table 4.17 gave much more uniform
results over the three experiments while requiring fewer generations to reach the
convergence. Now the red and green experiments show identical errors, with
three of four resulting quadruplets for all practical purposes shared. In this case
near-identical results suggesting that a near-optimal solution is found proved
misleading. In one of the earlier (erratic) results, a minimum error 0.5% smaller
was found (results not presented here).

The approach with larger populations, double initial population size and effec-
tively fewer populations was applied to the experiments with nq = 5 and 6, with
population sizes shown in Table 4.17 and error evolutions shown in Figs. 4.40c
and d. Note that for the last experiments, results again become a little more
erratic. Resulting optimum quadruplet settings for nq = 3, 4, 5 or 6 and red
green and blue experiments are presented in Tables 4.22 through 4.25.
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Table 4.22: Optimal GMD setting for three-parameter quadruplet layout and
three deep water quadruplets based on deep water tests only. Genetic
optimization followed by steepest descent.(r), (g), and (b) refers to red,
green and blue experiments.

experiment λ µ θ12(
o) Cd εtot (%)

red 0.072 0.033 23.3 3.06 108 12.01
0.215 0.067 7.3 4.10 107

0.339 0.148 17.4 1.22 107

green 0.074 0.037 22.8 2.71 108 11.94
0.204 0.070 8.8 4.77 107

0.341 0.162 18.2 1.29 107

blue 0.184 — 0.0 4.61 107 14.63
0.315 — 12.5 1.40 107

0.477 0.456 10.5 2.66 106

Table 4.23: Like Fig. 4.22 for nq = 4.

experiment λ µ θ12(
o) Cd εtot (%)

red 0.126 0.017 19.3 5.02 107 11.19
0.161 0.126 20.8 1.68 108

0.250 — 0.0 2.22 107

0.361 0.205 12.9 1.09 107

green 0.069 0.045 25.0 4.67 108 11.19
0.126 0.017 16.6 4.62 107

0.237 0.008 3.4 3.57 107

0.361 0.223 18.3 1.26 107

blue 0.081 0.037 22.4 4.23 108 12.00
0.247 0.072 0.5 3.68 107

0.337 0.152 23.4 4.06 106

0.373 0.230 18.9 7.65 106
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Table 4.24: Like Fig. 4.22 for nq = 5.

experiment λ µ θ12(
o) Cd εtot (%)

red 0.066 0.018 21.4 1.70 108 9.25
0.127 0.069 19.6 1.27 108

0.228 0.065 2.0 4.43 107

0.295 0.196 40.5 2.10 107

0.369 0.226 11.5 1.18 107

green 0.082 0.011 7.5 5.30 107 9.31
0.121 0.070 23.3 1.80 108

0.184 0.107 26.5 6.79 107

0.264 0.066 14.9 2.74 107

0.365 0.217 14.1 1.26 107

blue 0.068 0.025 20.6 2.22 108 9.83
0.145 0.079 17.4 1.42 108

0.176 0.022 61.8 3.98 107

0.244 0.075 3.6 2.71 107

0.345 0.185 15.7 1.93 107

A comparison of results for two- or three-parameter quadruplet definitions
shows that the three-parameter quadruplet definition is far superior in terms of
minimizing resulting model errors. Whereas the one-parameter quadruplet defini-
tion is a factor two cheaper in computation, the two- and three-parameter quadru-
plet definitions have identical computational costs. Considering this, a three-
parameter quadruplet definition should always be favored over a two-parameter
quadruplet definition, whereas a one-parameter quadruplet definition might still
be considered for its computational economy.

The results obtained with the three-parameter quadruplet definition and nq

increasing from 3 to 6 shows a steady improvement of model results, even for
nq = 6. However, with the increasing number of degrees of freedom in the
optimization, it becomes more difficult to optimize the quadruplet configurations.
Because the present optimizations do not yet consider source terms specifically
designed for (near) exact nonlinear interactions, there is little justification to try
and obtain even more accuracy by increasing nq even more. Therefore, such
experiments are not considered here. Note that the results for nq = 5 appear to
represent a sweet spot in terms of accuracy, as the results are much better than
those for nq = 4, but only marginally worse than those for nq = 6.

Considering the above, the results for the red experiment with the three-
parameter quadruplet definition with nq = 5 will be used as the basis for the shal-
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Table 4.25: Like Fig. 4.22 for nq = 6.

experiment λ µ θ12(
o) Cd εtot (%)

red 0.076 0.033 20.6 4.07 108 9.76
0.183 — 32.2 3.61 107

0.237 0.074 0.0 5.00 107

0.282 0.218 27.0 1.48 107

0.347 0.078 11.7 9.75 106

0.372 0.289 2.6 6.63 106

green 0.065 0.027 45.0 3.69 108 10.25
0.146 — — 5.01 107

0.237 0.126 16.0 4.75 107

0.289 — 19.2 1.67 107

0.330 0.282 15.0 1.45 107

0.393 0.287 11.7 8.48 106

blue 0.065 0.023 5.9 1.75 108 9.02
0.145 0.068 26.5 1.14 108

0.156 — 51.6 3.69 107

0.225 0.127 16.3 7.47 107

0.344 0.145 0.1 1.82 107

0.439 0.376 24.2 1.51 106
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Fig. 4.41 : Minimum errors (εmin, solid lines) and average errors for fittest
half of population (εavg, dashed lines) as a function of the generation
for optimization experiments (identified by color) for shallow water with
the three-parameter quadruplet definition. Starting from nq = 5 deep
water quadruplets (Table 4.24, red) optimizing m and Cs. n = −3.5
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Table 4.26: Optimum GMD setting for three parameter quadruplet layout
for the three shallow water tests. Starting point is red experiment with
nq = 5 from Table 4.24 with additional optimization of Cs and m. n =
−3.5

experiment λ µ θ12(
o) Cd Cs m εtot (%)

deep 0.066 0.018 21.4 1.70 108 — 0 39.51
0.127 0.069 19.6 1.27 108 — -3.79 38.75
0.228 0.065 2.0 4.43 107 —
0.295 0.196 40.5 2.10 107 —
0.369 0.226 11.5 1.18 107 —

red 0.066 0.018 21.4 1.70 108 6.71 105 -6.91 37.13
0.127 0.069 19.6 1.27 108 —
0.228 0.065 2.0 4.43 107 2.41 106

0.295 0.196 40.5 2.10 107 2.73 108

0.369 0.226 11.5 1.18 107 2.35 106

green 0.066 0.018 21.4 1.70 108 6.38 105 -6.91 37.13
0.127 0.069 19.6 1.27 108 —
0.228 0.065 2.0 4.43 107 2.43 106

0.295 0.196 40.5 2.10 107 2.76 108

0.369 0.226 11.5 1.18 107 2.41 106

blue 0.066 0.018 21.4 1.70 108 7.10 105 -7.08 37.13
0.127 0.069 19.6 1.27 108 —
0.228 0.065 2.0 4.43 107 2.40 106

0.295 0.196 40.5 2.10 107 2.78 108

0.369 0.226 11.5 1.18 107 2.38 106

low water optimization experiments in the following sections. The two-parameter
quadruplet will not be considered for shallow water optimization.

4.6.2 Shallow water, deep water quadruplets

The shallow water optimization using deep water quadruplets starts from the
three-parameter quadruplet definition with nq,d = 5 quadruplets from the red
experiment in the previous section only. First, a quick optimization is performed
to address the optimum value of m only with Cs ≡ 0. As in previous experi-
ments, an optimum value is found outside the range of initially expected values
(m = −3.79). To optimize the five values of Cs and the single value of m, three
experiments are run again with a population size of 250 and considering 40 gen-
erations., followed by a steepest descent optimization for the best performing
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member of the last generation. Error evolutions are presented in Fig. 4.41, and
optimum quadruplets are presented in Table 4.26.

Figure 4.41 shows highly consistent behavior of the three separate experi-
ments, with identical asymptotic behavior of the resulting model errors. The
Figure indicates that 20 rather than 40 generations would have sufficed for this
experiment.

For the deep water setting of the quadruplets (Cs ≡ 0), optimizing m has a
notable impact on model behavior, reducing the total model error for the shallow
water tests from εtot = 39.51% to εtot = 38.75%. Optimizing the quadruplets fully
for shallow water systematically improves the shallow water behavior, reducing
the model error further to εtot = 37.13%. The three experiments show near-
identical optimization results. In all cases the second quadruplet is not used for
shallow water, and, based on the value of Cs, the fourth quadruplet is dominant.
Negative values of m are found again. These values are outside the range of
theoretically expected values, but consistent with earlier optimization results.

4.6.3 Shallow water, separate quadruplets

The final set of optimization experiments considers optimizing additional shal-
low water quadruplets using a preset set of nq,d = 5 deep water quadruplets as
obtained in the previous section, together with nq,s = 3, 4, 5 or 6 additional
shallow water quadruplets. Values of m are also dynamically optimized, where
n = −3.5 again is preset. Because the number of degrees of freedom to be opti-
mized are nearly identical to the number of degrees of freedom optimized for the
corresponding deep water cases, population sizes and numbers of generations are
identical to those of the corresponding deep water optimization experiments as
presented in Table 4.17, with the exception of the experiments for nq,s = 6, for
which 120 instead of 150 generations are considered. The error evolution of all
experiments is presented in Fig. 4.42 and the corresponding optimum GMD set-
tings (after steepest descent optimization) are presented in Tables 4.27 through
4.30.

Figure 4.42a shows fairly consistent behavior between the three experiments
with nq,s = 3 shallow water quadruplets, with the red experiment as a (negative)
outlier. Resulting optimum model errors range from 33.3% to 33.8%. A fur-
ther comparison with Table 4.27 indicates that the subsequent steepest descent
optimization results in negligible improvements for all three experiments. The
differences in optimum results for the three experiments again indicate that there
are several near-optimum solutions. Note that the optimum configurations share
similar but not identical quadruplets, and that all solutions include quadruplets
that are in essence degenerated to the single parameter quadruplet definition
(µ = 0, θ12 ≈ 0◦). The resulting model errors are significantly better than the
best model errors obtained with the one parameter quadruplet in previous sec-
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Fig. 4.42 : Minimum errors (εmin, solid lines) and average errors for fittest
half of population (εavg, dashed lines) as a function of the generation
for optimization experiments (identified by color) for shallow water with
the three-parameter quadruplet definition and fixed set of nq,d = 5 deep
water quadruplets. (a) Number of shallow water quadruplets nq,s = 3.
(b) nq,s = 4. (c) nq,s = 5. (d) nq,s = 6.

tions (i.e., 36.4%), although this is at least partially due to better deep water
behavior in test 11 and test 12 as will be illustrated in Section 4.6.4.

Figure 4.42b shows fairly consistent behavior between the three experiments
with nq,s = 4 shallow water quadruplets, with the green experiment as a (neg-
ative) outlier. Resulting optimum model errors range from 33.1% to 33.3%. A
further comparison with Table 4.28 again indicates a minor impact of the subse-
quent steepest descent optimization, similar but not identical preferred quadru-
plets, as well as several quadruplets that have degenerated to the one-parameter
quadruplet definition.

Figures 4.42c and d and Tables 4.29 and Table 4.30 show a similar pattern
for nq,s = 5 or 6 shallow water quadruplets, with some additional observations.
First, the green and blue experiments with 5 shallow water quadruplets introduce
an alternative optimum two-parameter quadruplet definition where µ = 0 but θ12
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Table 4.27: Optimum GMD setting for three parameter quadruplet layout for
the three shallow water tests. Five pre-set deep deep water quadruplets
(nq,d = 5, shown for red case only) and three additional shallow water
quadruplets (nq,s = 3) optimized as shown in the table. m is dynamically
optimized, n = −3.5.

experiment λ µ θ12(
o) Cd Cs m εtot (%)

red 0.066 0.018 21.4 1.70 108 —
0.127 0.069 19.6 1.27 108 —
0.228 0.065 2.0 4.43 107 —
0.295 0.196 40.5 2.10 107 —
0.369 0.226 11.5 1.18 107 —
0.118 — 1.9 — 1.27 105 -7.05 33.79
0.322 0.043 2.7 — 1.12 106

0.349 0.211 42.9 — 2.93 108

green 0.184 — 2.4 — 5.74 105 -7.94 33.39
0.334 0.213 29.7 — 2.25 107

0.354 0.222 45.4 — 3.05 108

blue 0.093 — 4.7 — 9.04 104 -7.30 33.29
0.241 — 2.4 — 8.70 105

0.351 0.216 42.1 — 2.83 108

Table 4.28: Like Table 4.27 for nq,s = 4

experiment λ µ θ12(
o) Cd Cs m εtot (%)

red 0.040 — 4.0 — 1.35 105 -8.29 33.03
0.189 — 2.2 — 7.42 105

0.321 0.232 40.5 — 2.07 108

0.433 0.408 57.4 — 9.99 108

green 0.184 — 2.7 — 7.86 105 -8.19 33.27
0.320 0.236 41.9 — 2.74 108

0.432 0.406 57.3 — 7.19 108

0.493 0.261 21.3 — 5.09 108

blue 0.182 0.180 17.1 — 3.50 107 -7.97 33.05
0.184 — 2.2 — 7.62 105

0.334 0.204 36.8 — 1.20 108

0.387 0.261 49.9 — 4.66 108
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Table 4.29: Like Table 4.27 for nq,s = 5

experiment λ µ θ12(
o) Cd Cs m εtot (%)

red 0.036 0.003 4.2 — 2.54 105 -7.58 32.72
0.105 0.104 0.5 — 1.58 107

0.184 — 1.9 — 7.40 105

0.360 0.225 44.1 — 5.04 108

0.375 — 0.0 — 1.03 106

green 0.146 0.005 59.9 — 1.87 108 -9.07 32.88
0.184 — 1.9 — 9.20 105

0.185 0.184 17.1 — 6.04 107

0.321 0.236 40.0 — 2.65 108

0.433 0.405 56.7 — 1.11 109

blue 0.043 — 4.1 — 1.56 105 -9.18 32.98
0.164 — 60.0 — 1.96 108

0.192 — 2.4 — 9.60 105

0.323 0.232 40.4 — 2.76 108

0.434 0.402 55.9 — 8.02 108

Table 4.30: Like Table 4.27 for nq,s = 6

experiment λ µ θ12(
o) Cd Cs m εtot (%)

red 0.032 0.001 3.7 — 2.77 105 -8.72 32.80
0.157 — 60.1 — 2.26 108

0.184 — 2.0 — 9.65 105

0.322 0.233 39.4 — 2.86 108

0.418 — 0.2 — 1.36 106

0.438 0.401 52.5 — 6.61 108

green 0.035 0.005 5.0 — 3.91 105 -8.71 32.98
0.158 0.007 60.4 — 2.48 108

0.191 — 2.2 — 1.13 106

0.319 0.238 38.4 — 2.20 108

0.371 0.248 50.8 — 3.64 108

0.442 0.409 54.7 — 7.34 108

blue 0.048 0.004 4.7 — 2.37 105 -7.58 32.99
0.184 — 1.5 — 6.71 105

0.237 — 3.1 — 6.49 105

0.315 0.237 39.7 — 2.33 108

0.406 0.294 52.8 — 6.81 108

0.459 0.083 0.8 — 1.61 106
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Table 4.31: Synopsis of errors in % for optimized configurations for the GMD
with the two or three quadruplet layout. Gabc refers to a parameters
in the quadruplet and b deep water quadruplets. c as ’d’ refers to deep
water optimization only, ’s’ refers to quadruplets optimized for deep and
shallow water, while a number refers to the number of separate shallow
water quadruplets (nq,s). Deep water configurations with m = 0 unless
specified differently. S25d refers to G25d with high-frequency smoother
added.

test case
01 02 03 04 05 06 11 12 13 tot

G23d 12.9 14.4 13.7 16.0 14.1 14.1 — — — 14.2
G24d 9.6 14.3 11.4 10.7 14.6 10.8 — — — 11.9
G25d 8.9 14.4 10.3 9.2 13.3 9.8 — — — 11.0
S25d 8.8 14.4 10.3 9.1 13.2 9.8 — — — 10.9
G26d 8.9 12.7 10.5 10.6 11.9 10.0 — — — 10.8
G33d 11.6 12.0 11.8 11.3 12.8 12.1 — — — 11.9
G34d 9.9 11.2 11.2 10.5 12.6 11.7 — — — 11.2
G35d 7.8 9.7 9.4 9.2 10.9 8.6 — — — 9.3
G36d 7.0 10.3 9.5 8.2 10.8 8.7 — — — 9.1

G35d 7.8 9.7 9.4 9.2 10.9 8.6 13.6 21.2 83.7 19.3
(m = −3.79) 13.5 22.1 80.7 19.1

G35s 13.3 20.7 77.4 18,5
G353 12.4 19.3 68.1 17.3
G354 12.9 18.1 68.1 17.2
G355 12.5 18.7 67.0 17.1
G356 12.9 18.0 67.5 17.1

is substantial (θ12 = 60◦). Second, no further improvement is found for nq,s = 6
quadruplets, leaving the optimized configurations with nq,s = 5 quadruplets as
the preferred configuration when accuracy and economy are considered.

This concludes the present optimization experiments for shallow water. It should
be noted that this was a first-ever attempt to optimize the GMD for extremely
shallow water, and that hence not the same maturity level can be expected as
for deep water. It is expected that shallow water optimization can be improved
further by adjusting both the shallow water scaling and the actual optimization
techniques. This will be the subject of subsequent studies.
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Fig. 4.43 : Evolution in time of a) significant wave height Hs, b) peak fre-
quency fp, c) mean direction θ, and d) directional spread σθ for the
slanting fetch test test 05. Green line: WRT. Red line: WAM. Dotted /
dashed / solid blue lines: GMD3 / G25d / G35d. Solid line in panel c)
represents wind direction.

4.6.4 Summary

In Section 4.6 a GMD with the two- or three-parameter quadruplet definition
has been optimized for deep and shallow water. Based on experiences with the
optimization of the traditional quadruplet layout, these versions of the GMD
have been optimized using a increasing number of fully optimized quadruplets.
First, deep water quadruplets have been optimized, then one of these deep water
quadruplet configurations has been used as the starting point for shallow water
optimization. The experiments indicate improved model behavior for increasing
numbers of deep water quadruplets up to the maximum number considered here
(6), whereas no notable improvement was found for shallow water optimization
beyond nq,s = 5. A synopsis of the errors for various optimized GMDs with
increasing complexity is presented in Table 4.31. All model configurations cor-
respond to the best performing configurations from the corresponding tables in
Sections 4.6.1 through 4.6.3. For model configurations G23d through G36d above
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Fig. 4.44 : Like Fig. 4.43 for wave growth with swell test test 06.

the double line in the table, only the deep water tests are considered in the com-
putation of the overall error. For the model configurations below the double line,
deep and shallow water tests are considered in the total error. Since the deep
water test results are identical for the latter configurations, these errors are not
reproduced for each shallow water configuration.

The deep water optimization experiments with increasing numbers of quadru-
plets for the two-parameter quadruplet definition (configurations G23d through
G26d) and for the three-parameter quadruplet definition (configurations G33d
through G36d) show a systematic improvement of the overall model error with in-
creased complexity (Table 4.31). For individual tests, however, the improvement
is not monotonous with increasing ng,d. This could be interpreted as another in-
dication that there are many near-optimum configurations. It also indicates that
the genetic optimization approach could easily be used to target more specifically
individual tests, or more detailed model behavior by adding additional tests rep-
resenting such behavior. Although the smallest errors are found for nq,d = 6, the
additional benefit compared to nq,d = 5 is small. For this reason, and somewhat
subjectively, the latter configurations will be considered here as the presently
optimum approach when considering both accuracy and economy.
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Figures 4.43 and 4.44 present mean wave parameters for various deep wa-
ter configurations for test test 05 (slanting fetch) and test 06 (wave growth in
the presence of swell). Presented are the reference results (WRT, green line),
previous approach (WW3, red line) and optimized GMD results (blue lines).
The latter include a one-parameter (GMD3, dotted line), two-parameter (G25d,
dashed line) and three-parameter (G35d, solid line) quadruplet definition. In gen-
eral the traditional approach and the results for the one-parameter quadruplet
definition clearly differ from the reference conditions, but the results for the two
and three-parameter quadruplet definitions are, for practical purposes, identical
to the reference results. Only for the directional spread at very short fetches
in the slanting fetch case (Figure 4.43c) the G35d approach is clearly superior
to all others, and only for the directional spread of the swell in the case with
wave growth in the presence of swell (Figure 4.43d) do none of the DIA or GMD
approaches accurately describe the directional widening of the swell spectrum.
The latter may either indicate a systematic limitation of the GMD, or of the rep-
resentativeness of the test cases to properly describe interactions between wind
seas and swell.

Differences between results for the various optimized GMD configurations
with respect to spectral parameters are much larger than for the mean wave
parameters, as is illustrated in Figs 4.45 through 4.47. The smallest differences
are found for the one point models in the time-limited test cases, for which
Figs 4.45 is representative. Larger differences are found for the two fetch-limited
test cases (Figs 4.46 and 4.47.)

The three parameter quadruplet GMD (solid blue lines) clearly outperforms
the two parameter quadruplet GMD with respect to the mean direction direc-
tional spread and nonlinear source term (panels c, d and e) for all test cases. For
the fetch limited test cases, the three parameter quadruplet definition also out-
performs the two parameters definition with respect to the spectral shape (panels
a), reproducing a clearly sharper and more accurate spectral peak. For the one-
point models, this difference is less pronounced or even negligible. Only for the
steepness spectrum (panels b), the behavior is somewhat anomalous. Here, the
three parameter quadruplet definition results in an overestimation of the reduc-
tion of the steepness just above the spectral peak, potentially resulting in an
artificial bi-modality in the steepness spectrum. This behavior will need to be
monitored in real life applications to ensure that this does not result in spurious
multi-modal spectra.

Two-dimensional spectral results are illustrated in Figs. 4.48 and 4.49 with
spectral from the first three offshore grid points of the fetch limited and slanting
fetch test cases. Somewhat surprisingly, the two parameter quadruplet definition
results in spectral noise in the points closest to shore, which disappears when
moving offshore. This behavior is also obvious in the nonlinear interactions. but
is not seen in the other test cases (figures not presented here). Note that the G35d
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Fig. 4.45 : One-dimensional spectral quantities after 6 h of model integration
for test test 01 a) energy spectrum F (f), b) steepness spectrum G(f),
c) mean direction θ(f), d) directional spread σθ(f), e) nonlinear interac-
tions snl(f), f) nonlinear energy flux M(f), Legend as in Fig. 4.43. All
variables normalized with the absolute maximum of the WRT results.
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Fig. 4.46 : Like Fig. 4.45 for test 02 at 50km offshore

.
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Fig. 4.47 : Like Fig. 4.46 for test 05.

.

configuration is the only configuration that attempts to reproduce spectral multi-
modality of the WRT method in the fetch-limited growth test, albeit with limited
accuracy. The one-parameter WAM and GMD3 methods result in uniformly
unimodal spectra (figures not reproduced here)

The spectral noise in the G25d configuration occurs only at high frequencies.
Therefore, it is natural to attempt to suppress it with the high-frequency filter
introduced in Part 3 and reproduced in Section 2. The resulting two-dimensional
spectra corresponding to those presented in Figs. 4.48 and 4.49 are presented in
Fig. 4.50, and the corresponding model errors per test are presented in Table 4.31
and are identified as configuration S25d. A comparison of the three figures shows
that the filtering indeed suppresses the high-frequency noise in the spectra, and
the table indicates that the resulting model errors are actually slightly better than
those of the corresponding unfiltered model configuration (compare configurations
S25d and G25d). When comparing the two configurations to each other instead
of to the reference WRT results, model differences (‘errors’) of 3% are found.
The fact that these differences are much smaller than the errors of the individual
configurations, indicates that the effects of the filtering indeed affect noise in the
spectral tail, with minimal impact on other model behavior.

If the filtering is used in combination with the GMD, the filter would ideally be
included in the optimization experiments, and not included after the optimization
has taken place. For the present feasibility oriented study, and given the small
impact of the filter on model behavior other than high-frequency noise, such
an optimization has not been considered. For future optimization experiments,
however, the filter (with possibly its parameter values, should be included in the
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Fig. 4.48 : Two-dimensional energy spectral F (f, θ) from approaches as in-
dicated in the panels for the fetch-limited growth test test 02 10km (left
panels), 20km (center panels) or 30km (right panels) offshore. Loga-
rithmic scaling with factor 2 between contours and lowest contour at
0.25 m2s. Frequencies ranging from 0 to 0.25 Hz, frequency grid lines at
0.05 Hz intervals.
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Fig. 4.49 : Like Fig. 4.48 for test test 05.
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Fig. 4.50 : Like Fig. 4.48 and 4.49 for G25d with high-frequency filtering added.

genetic optimization experiments.

So far, only deep water configurations have been discussed. To minimize the
number of optimization experiments, all shallow water optimizations have been
performed with a fixed set of deep water quadruplets, for which the G35d con-
figuration was chosen. Table 4.31 shows the impact of subsequent optimization
of m, of Cs for the deep water quadruplets (G35s), or adding of 3 to 5 separate
shallow water quadruplets (G353 - G356) of errors per shallow water test and
on the overall model error. Optimizing m has a small but notable impact on
all errors, as does optimization of Cs for each individual deep water quadruplet,
incrementally reducing the overall model error by 0.2, and 0.6%, respectively. A
larger impact is found when optimizing three independent shallow water quadru-
plets (G353), which reduces the overall model error by 1.2% compared to the
five deep/shallow quadruplets, and by 2.0% compared to the deep water config-
uration. Subsequent adding of quadruplets has a minor but systematic positive
impact on model errors. Note that as with the deep water optimization, errors
of individual tests do not monotonically improve with complexity of the GMD
configuration.

Figures 4.51 through 4.53 show the mean wave parameters Hs and kpd for the
three shallow water tests, and for the WRT, WW3, GMD3s3 and G354 through
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Fig. 4.51 : Evolution in time of a) significant wave height Hs, and b) relative
depth kpd for the shallow water growth test test 11. Green line: WRT.
Red line: WAM. Dotted / dashed / solid blue lines: G354 / G355 /
G356. Purple chain line: GMD3s3 based on one-parameter quadruplet
definition.
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Fig. 4.52 : Evolution in space of a) significant wave height Hs, and b) relative
depth kpd for the wind seas on beach test test 12. Legend as in Fig. 4.51.
Solid black line in c) represent wind direction.
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Fig. 4.53 : Like Fig. 4.52 for the swell on beach test test 13, adding mean
direction and directional spread.
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Fig. 4.54 : (a) One-dimensional spectra F (f) for test test 13 at 3 m water
depth and (b) corresponding nonlinear interactions snl(f) for results of
Tables 4.10 and 4.11. green solid line: WRT. red solid line: no Snl. blue
dashed line: nq = 2 (green exp.). blue dotted nq = 3 (green exp.).
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Fig. 4.55 : Like Fig. 4.54 at 1m water depth.

G356 configurations. For test 11 and test 12, the GMD configurations based on
the three-parameter quadruplet definition (blue lines) have some advantage over
the configurations based on the one-parameter quadruplet definition (GMD3s3,
purple line). As before, it is noticed that errors for these two tests are domi-
nated by errors in the deep water / offshore conditions, and hence depend on
the accuracy of the deep water quadruplet configuration used as the basis for the
shallow water optimization. For the swell test test 13 virtually no differences are
found in the wave height and relative depth. In the shallowest grid points in the
latter test, however, (d ≤ 5m) the directional spread and the peak frequency (not
shown here) show clear differences between the various approaches.

As in previous optimization experiments, the small divergences of approaches
for extremely shallow water is associated with the inability of the present GMD
implementation to accurately describe the strong interactions in the shallowest
water. Figure 4.54 shows the spectrum and source term at 3m water depth.
As with the corresponding results for the optimized one-parameter quadruplets
shown in Fig. 4.28, a spurious low-frequency peak is found in both the spec-
trum and the source term, with the present most complex approach giving only
marginal improvements over the latter. The most extreme conditions in the
shallowest grid point of this test, however, do indicate the benefit of additional
complexity in the GMD configuration. This is illustrated in Fig. 4.55; partic-
ularly the interaction source term at this depth is clearly improved by adding
quadruplets. This is not evident in the overall model error, as this behavior oc-
curs in only a few of the 47 test spectra for this test case. In spite of the spurious
shift of the spectrum to lower frequencies, the capability of the GMD to lower
the spectral peak and widen the spectrum is impressive.
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Table 4.32: optimum deep water GMD configurations.

configuration λ µ θ12(
o) Cd

WAM 0.250 — — 3.00 107

WW3 0.250 — — 1.00 107

GMD1 0.231 — — 2.54 10n

GMD3 0.066 — — 5.80 107

0.184 — — 4.32 107

0.318 — — 1.43 107

G35d 0.066 0.018 21.4 1.70 108

0.127 0.069 19.6 1.27 108

0.228 0.065 2.0 4.43 107

0.295 0.196 40.5 2.10 107

0.369 0.226 11.5 1.18 107

4.7 Summary of results

The present section provides a first ever attempt to optimize a full GMD for
deep and shallow water, although it can be considered as an expansion of previ-
ous work for deep water. The deep water results are in line with previous results
and show a massive improvement of model behavior with increasing complexity
of the GMD configuration. Preferred deep water configurations will be discussed
below. Shallow water optimizations have never been attempted before. The re-
sults presented here show the potential of the GMD to improve model behavior
in shallow water, but also shows some remaining issues with spurious behavior in
extremely shallow water. This behavior indicates a need for re-assessing the scal-
ing of the GMD in such conditions, as well as a need for re-assessing optimization
for such conditions. Both are linked, and will be considered outside the scope of
the present study. Considering this, only improvements for operational model in
deep water will be considered in the remainder of this study. Due to the natural
separation of deep and shallow water behavior in the GMD, and considering that
the GMD and DIA are traditionally considered only for deep and intermediate
water depths, considering deep water improvements is both straightforward and
appropriate.

Optimizing a GMD is an exercise in finding balance between accuracy and
economy. For this reason, there is no single optimum solution. Accuracy is
measured against the reference model configuration with the WRT nonlinear in-
teraction parameterization, whereas economy and accuracy are measured relative
to accuracy and computational costs of the original DIA in WAM or WW3 con-
figuration. The traditional DIA configuration is the benchmark for speed, but
cannot provide all-round accuracy. The WAM and WW3 configurations should be
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used for reference, whereas the GMD1 configuration represents a subjectively op-
timized configuration. The GMD1 configuration, however, lacks the capability to
accurately describe both wave energy and peak frequency. This capability can be
introduced by using the GMD3 configuration, in which three traditional quadru-
plet configurations are used. The experiments with optimizing such a GMD by
sampling spectral space with pre-set quadruplets confirms that no accuracy can
be gained by using more than 5 or 6 traditional quadruplet configurations, and
that a balance between economy and accuracy is found by using a GMD3 config-
uration. Whereas a GMD3 configuration goes a long way towards accurate mean
wave parameters, clear spectral errors remain. Spectral errors can be reduced
by introducing two- or three-parameter quadruplet definitions in the GMD. A
reasonable balance between cost and accuracy was found in the G25d and G35d
configurations. Since the G25d configuration is less accurate, equally expensive,
and more sensitive to producing spectral noise, the G35d configuration appears
preferable. This leaves the WRT, WAM, WW3, GMD1, GMD3 and G35d con-
figurations to be tested in practical application in Section 5. For convenience,
the corresponding GMD configurations are gathered in Table 4.32.
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5 Practical applications

So far, only test results that were part of the optimization have been considered.
Such tests are not independent, and cover only a limited number of idealized test
conditions. Hence, the next step is to test the selected GMD configurations in
more realistic conditions. As mentioned in the previous section, only deep water
tests will be considered for now. Error metrics will consist of the previously used
test metrics for selected points and times, augmented with maps of differences
in mean wave parameters. Model run times will also be considered to assess if
increases in run times coincide with expectations from Part 3. The realistic test
cases considered are a synthetic moving hurricane, and a storm system over Lake
Michigan.

Note that the only goal for executing these tests is to see if model results ob-
tained with the GMD closely follow those obtained with the exact WRT method.
Since there are no operational wave model physics packages available designed
explicitly for the WRT methods5, a comparison with wave data is somewhat
futile.

5.1 Moving idealized hurricane

The first realistic test considers a moving hurricane modeled with a set of three
telescoping nests with resolutions of 50, 15 and 5km, respectively. This case
(test hr) is in essence the mww3 test 05 test that is distributed with WAVE-
WATCH III version 3.14 (with outer output points at 500km rather than 800km
from the eye of the hurricane). A total of 33 output points are used to compute
the metrics of this study. The grid layout and the output points are illustrated in
Fig. 5.1. Note that maps of mean wave parameters for this test will be generated
by successive overlay of graphics for the three individual grids, without attempts
to smooth the transitions. The model starts from calm conditions and integrates
for 24h. Spectra at the end of this period are considered. The maximum wind
speed is 45ms−1 and the radius of maximum wind is 50km. The hurricane and
grid move with a speed of 5ms−1 to the right. This test is run with the spectral
resolutions used throughout the GMD optimization.

The wave heights at the end of the integration period for the exact WRT
computation are presented in Fig. 5.2a. Due to waves and the storm moving in
the same direction, and hence having most time to grow, waves at the right side
of the storm (or south side of the eye in the figure) are the highest and surpass
Hs = 12.2m. Conversely, waves at the left (north) side of the eye are lowest and
typically Hs < 6m, with an ‘eye’ in the wave field slightly to the NW of the eye
of the storm with wave height Hs < 2m. Swells with Hs > 3m (comparable to

5 Note that some source term development has bee done with WRT in idealized cases, e.g.,
Alves and Banner (2003).
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Fig. 5.1 : (a) Grid layout and output points for moving grid hurricane test
test hr. Purple grid boxes identify boundary points in telescoping grids
with resolutions of 50, 15 and 5km, respectively. Offsets in km. Outer
grid ranges from -1250 to 1250km, and is not fully displayed.(b) Output
point used in following figures, overlaying WRT wave heights.

the 12ft wave height range monitored by the National Hurricane Center in the
US) running ahead and to the right of the storm reach as far as 400km east and
600km south of the storm

Panels (b) through (f) of Fig. 5.2 show the differences in wave heights for
the five GMD configurations compared to the exact solution. The WW3, WAM
and GMD1 configurations correspond to versions of the traditional DIA. For all
three configurations, wave heights on the left (north) of the eye of the storm are
overestimated by as much as 1.4m, whereas wave heights on the right (south) of
the storm are underestimated by as much as 1.4m. Furthermore, forerunners of
the storm (in the east of the plot) are systematically underestimated by more
than 0.4m. Figure 5.3b through f show the corresponding relative differences.
The traditional DIA configurations result in wide spread errors in wave heights
ranging from -20 to 30%.

Figures 5.2e and 5.3e show the absolute and relative wave height errors ob-
tained with the GMD3 configuration. Errors are still widespread but, as expected,
much reduced compared to the configurations compatible with the DIA. The max-
imum wave height errors are less than 1m, and generally less than 10%. Finally,
Figs. 5.2f and 5.3f show the absolute and relative wave height errors obtained with
the G35d configuration. Errors are much less wide spread, and greatly reduced
in magnitude, with maximum local wave height errors uniformly below 0.4m and
10%, and generally below 5%. Hence, as expected, the progression of GMDs with
increasing complexity leads to increasing accuracy, with the G35d configurations
closely reproducing wave heights from the WRT approach. As the wave heights
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Fig. 5.2 : (a) Significant wave height Hs for the hurricane test test hr and the
WRT approach. Contour intervals at 1m and maximum wave height
larger than 12m (b-f) Wave height difference in m for indicated ap-
proaches. Contour levels at 0.2m. Reds indicate positive difference. 0m
difference contour not plotted.
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Fig. 5.3 : Like Fig. 5.2 with relative differences of wave heights in percent,
and contours at 4% intervals.
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Fig. 5.4 : Spectral behavior of various nonlinear approaches for output point
mSW as identified in Fig. 5.1. (a) Two-dimensional spectrum F (f, θ).
(b) One-dimensional spectrum F (f). (c) Steepness spectrum G(f).(d)
Spectral direction σθ(f). (e) Directional spread σ(f). (f) Source term
snl(f). Green line: exact (WRT) solution. Dashed dark green line:
G35d. Blue line: GMD3. Red line: GMD1.

in this test case form a mix of wind seas and swells, and since both appear to be
reproduced accurately, this also suggests accurate description of spectral shapes.

The next step is to check more detailed spectral model behavior at the output
test points. Examples of this are shown in Figs. 5.4 through 5.19. First, wave
conditions at the radius of maximum wind will be considered.

The largest waves are found near the radius of maximum winds in the SE
sector of the hurricane. In the southern half of the hurricane, winds and waves
line up, and result in a slightly rotated wind sea spectrum. The highest waves are
found near output point mSW, and resulting spectral parameters are presented
in Fig. 5.4. Errors for the various GMD configurations are as expected from the
results in the previous sections. Increasing complexity of the GMD results in
increasing accuracy, with the G35d configuration being highly accurate but with
a slight bi-modality in the steepness spectrum G(f) (Fig. 5.4c).

The lowest wave heights at the radius of maximum winds occur in the NW
quadrant of the hurricane, where the hurricane and the winds move in different
directions, and where no swells can penetrate from other quadrants of the hurri-
cane. As is illustrated in Fig. 5.5, waves have higher frequencies and result in a
directionally skewed wind sea spectrum. In the NE quadrant of the hurricane the
spectrum is strongly skewed, with the peak spectral energy at more than 90◦ off
the wind direction (Fig. 5.6a, d). Even here the spectrum retains typical wind sea
characteristics with respect to spectral shape and nonlinear interaction, however,
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Fig. 5.5 : Like Fig. 5.4 for location mNW

with limited peak enhancement as with the idealized turning wind case.
The next set of output points is located at twice the radius of maximum

wind. For most of these output points, spectra are typical skewed wind sea
spectra similar to those found at the radius of maximum wind speed. However,
in the northernmost three output points, there appears to be a start of wind-sea
to swell separation, with the nonlinear interactions loosing the typical three-lobed
structure for wind seas. This is illustrated here with spectral output for the point
directly north of the eye of the hurricane in Fig. 5.7.

The third set of output points is located at 210km from the eye of the hur-
ricane, or approximately 4 times the radius of maximum wind speed. North of
the eye of the hurricane, winds have become light at this distance, and spectra
are transitioning to narrow swell shapes. This is illustrated here with spectral
data directly north of the eye in Fig. 5.8. Note that in Fig. 5.8c the steepness
spectrum does not seem to be normalized properly. This can be attributed to the
fact that the low wind speed attempts to build a wind sea at high frequencies at
the edge of the discrete spectral grid, but without sufficient spectral resolution
to resolve the wind sea spectrum up to 3fp. In this case, the WRT approach
results in locally unrealistic spectral values, particularly influencing α, β and f0.
hence, in computing objective errors for this case, it is prudent not to include
error measures for these three parameters.

South of the eye of the hurricane, winds remain stronger, and spectra retain
characteristics of wind seas. This is illustrated here with spectral data directly
south of the eye in Fig. 5.9. Note that this spectrum still has the spectral peak
enhancement and shape of the nonlinear interactions typical for wind seas. Note
that somewhat anomalous behavior at this distance to the eye is found directly

140



0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

f (Hz)

F (f )

(−)

(b)

0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

f (Hz)

G (f )

(−)

(c)

0.05 0.1 0.15 0.2 0.25
−180

−90

0

90

180

f (Hz)

−
θ(f )

(o)

(d)

0.05 0.1 0.15 0.2 0.25
0

15

30

45

60

f (Hz)

σ(f )

(o)

(e)

0.05 0.1 0.15 0.2 0.25

−1

−0.5

0

0.5

1

f (Hz)

s
nl

(f )

(−)

(f)

Fig. 5.6 : Like Fig. 5.4 for location mNE
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Fig. 5.7 : Like Fig. 5.4 for location aN
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Fig. 5.8 : Like Fig. 5.4 for location bN
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Fig. 5.9 : Like Fig. 5.4 for location bS
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Fig. 5.10 : Like Fig. 5.4 for location bW

behind the hurricane (Fig. 5.10.) Here, the spectrum clearly starts to separate
into a swell originating from the northern half of the hurricane, and a wind sea
left behind by from the western side of the hurricane.

The fourth and last set of output points is located at 500km from the eye of
the hurricane, or 10 times the radius of maximum wind speed. Because all output
points show somewhat different behavior here, spectral data are presented here
for all 8 points in Figs. 5.11 through 5.18. The discussion of the output at these
points will start in the NE quadrant (Fig. 5.11), and will run counterclockwise
to the point east of the eye of the hurricane (Fig. 5.18).

Going from the NE to the NW quadrant (Figs. 5.11 through 5.13), winds are
virtually non-existent, and the spectrum has transitioned to a distinct swell con-
figuration, with low frequency energy distributed over narrow bands in frequency
and direction. Note that two of the three spectra have issues with normalizing
the steepness spectrum as discussed above. Directly behind the hurricane (loca-
tion cW, Fig. 5.14). the two spectral peaks observed closer to the hurricane in
Fig. 5.10 have now fully separated into individual wave fields. In the SE quadrant
(Fig. 5.15), these two wave fields are starting to separate, with a clear impact on
the nonlinear interactions, whereas south of the eye (location cS, Fig. 5.16) no
separation is visible in the spectrum or source term. Finally, leading the hurri-
cane in the SE quadrant and east of the eye (Figs. 5.17 and 5.18) again two wave
fields can be distinguished, including a low-frequency swell that represents the
“forerunners” of the hurricane. This brings us back to the full swell conditions
to the north of the eye.

The only location not yet considered is the eye of the hurricane (Fig. 5.19).
The wave height maps in Figs. 5.2 and 5.3 indicate an ’eye’ in the wave height
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Fig. 5.11 : Like Fig. 5.4 for location cNE
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Fig. 5.12 : Like Fig. 5.4 for location cN
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Fig. 5.13 : Like Fig. 5.4 for location cNW
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Fig. 5.14 : Like Fig. 5.4 for location cW
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Fig. 5.15 : Like Fig. 5.4 for location cSW
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Fig. 5.16 : Like Fig. 5.4 for location cS
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Fig. 5.17 : Like Fig. 5.4 for location cSE
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Fig. 5.18 : Like Fig. 5.4 for location cE
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Fig. 5.19 : Like Fig. 5.4 for location eye

field offset from the eye in the wind field, and associated with notable wave height
errors. Figure 5.19 indicates that the error is associated with a general overes-
timation of the spectral energy for the GMD1 and GMD3 configurations, with
a moderate overestimation for the G35d configuration. Note that the spectral
shape and source term suggest a wind sea spectrum, although the actual local
wind speed is virtually nonexistent.

Considering Figs 5.4 through 5.19 this test case represents a large variety
of wind wave conditions, including wind seas under turning wind conditions,
wind-sea and swell separation, coexisting wind seas and swell, and swell dom-
inated conditions. Uniformly, increasing complexity in the GMD configuration
corresponds to better model behavior, with qualitative model improvements fully
consistent with the improvement seen in the test cases used for the optimization.
Objective error measures for this test are presented in Table 5.1 on page 163.
In these error measures, errors for α, β and f0 are not considered for reasons
discussed above. The table shows error measures declining systematically from
27 to 17% with increasing complexity of the GMD configuration. This test case
strongly suggests that the findings from the dependent test cases for the opti-
mization of the GMD can be applied to more general cases. Furthermore, this
test case quantifies that practical errors in wave height for hurricane conditions
incurred due to errors in the DIA can be as large as 25%, and show systematic
differences for the various quadrants of the hurricane relative to its propagation
direction. Due to this systematic nature of the errors, it is expected that they
will also occur in a well-tuned model.
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5.2 A storm on Lake Michigan

The second realistic test considers a a real time forecast problem for Lake Michi-
gan. The grid is extracted from the operational Great Lakes wave models at
NCEP, and has a resolution of 0.05◦ in latitude and 0.0035◦ in longitude (or
approximately 4km). The grid consist of 66 × 133 grid points with 41% (3598)
wet grid points. For this test, the spectral range is expanded to 60 frequency
grid points and out to 2.17Hz, to avoid issues with unresolved spectra for low
winds as encountered with the WRT methods in the previous section. A two
day period around a storm on October 6 and 7, 2009 is considered, During these
two days, a strong wave event with rapidly turning wind and wave conditions
occurred in the southern part of Lake Michigan. For this period hourly spectra
are saved at buoy location 45007. Winds for this model run are provided by
the Great Lakes Environmental Research Laboratory (GLERL), and consist of
analysis based on in-situ observed winds only. The model is spun up with a one
day model integration, for which results are not considered here.

Wave height maps for various dates are presented in Fig. 5.20 through 5.27,
together with relative differences in wave heights for the five GMD configurations
considered here. These figures represent the beginning and ending times of the
period considered. The discussion will mostly focus on the southern part of Lake
Michigan around buoy 45007 (identified by the black square in th figures).

At the beginning of the period considered (Fig. 5.20), weak southeasterly
winds cover the southern half of Lake Michigan, with accompanying wave heights
between 0.3 and 0.6m. Wind and wave conditions in the north are generally
weaker. The GMD configurations equivalent to the traditional DIA (WW3, WAM
and GMD1, Figs. 5.20b through d) show fairly systematic errors throughout the
basin, with the WW3 configuration overestimating wave height Hs by typically
5-10%, the WAM configuration underestimating Hs by 10-15%, and the GMD1
configuration underestimating Hs by 5-10%, For both the GMD3 and G35d con-
figurations, mean wave heights are well represented, with more localized errors
generally smaller than 5%.

In the next several hours, winds and waves in the southern part of the basin
slowly increase while wind and wave conditions in the northern part slowly de-
crease. At 14z (Fig. 5.21). Error patterns are generally unchanged, although
WW3, GMD3 and G35d configurations have become more accurate. Note that
positive errors in Green Bay (upper left) are at least partially due to the low
normalizing wave height in the WRT approach.

By 18z (Fig. 5.22) winds and wave height have increased throughout the basin,
and the errors in Green Bay have disappeared. Otherwise, error patterns have
generally remained the same. In the next three hours (Fig. 5.23) winds in the
south turn to the southwest and higher waves travel from the west to the center
of the lake. An area of moderate errors is starting to grow in the center of the
lake in the G35d configuration.
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Fig. 5.20 : (a) Significant wave height Hs at Oct. 06 09z for the Lake Michi-
gan test test LM and the WRT approach. Contour intervals at 1/3 m.
Black arrows identify peak wave direction. Red arrows identify wind
direction. (b-f) Relative ave height difference in % for indicated ap-
proaches. Contour levels at 4%. Reds indicate positive difference. 0%
difference contour not plotted. The symbol represent the location of
buoy 45007.
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Fig. 5.21 : Like Fig. 5.20 at Oct. 06 14z.
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Fig. 5.22 : Like Fig. 5.20 at Oct. 06 18z.
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Fig. 5.23 : Like Fig. 5.20 at Oct. 06 21z.
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Fig. 5.24 : Like Fig. 5.20 at Oct. 07 00z.
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Fig. 5.25 : Like Fig. 5.20 at Oct. 07 06z.
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Fig. 5.26 : Like Fig. 5.20 at Oct. 07 12z.
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Fig. 5.27 : Like Fig. 5.20 at Oct. 08 00z.
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By 00z on Oct. 7 (Fig. 5.24), winds are still in the southwest, and the highest
waves have reached the eastern side of the lake, with relatively larger errors for the
GMD3 and G35d configurations. Over the next 6 hours, the winds gradually turn
to the northwest and increases, until the maximum wave heights occur for this
storm in the southern part of the lake (Fig. 5.25). By this time, the relatively
larger errors for the GMD3 and G35d configurations have subsided to smaller
values as observed earlier in the storm, and as consistent with the expected
increased accuracy for increased complexity of the GMD configuration.

As in previous figures, the wave height errors as incurred by the WW3 con-
figuration are surprisingly small. In fact wave height errors for this configuration
suggest a very high model accuracy for this GMD configuration. As will be shown
below, the low wave height errors for this configuration are associated with large
errors in spectral shape, so that the suggestion of accuracy based on wave height
error alone is misleading.

During the next 6 hours, winds remain northwesterly over the entire basin,
but gradually decrease in strength. This results in a similar wave height distribu-
tion, but lower wave heights in general (Fig. 5.26). For the GMD configurations
consistent with the DIA, in particular the WW3 configuration, some systematic
positive errors occur for short fetches and offshore winds at the western side of
the basin. The G35d configuration now results in near-prefect wave height fields.
Over the next 6 hours up to 18z on the October 7, these wind and wave conditions
(including wave height errors) largely persist with slowly diminishing wind speeds
and wave heights (no figures presented here). Waves in the southern part of the
basin travel in more southerly directions as they start displaying swell rather
than wind sea conditions. For the last six hours of the period considered, winds
turn to the southeast, and start building moderate wind seas (Fig. 5.27). In the
southern part of the basin, this creates conditions of winds and swells in oppos-
ing directions. At the end of the simulation, wave height errors incurred by the
WW3 configuration have become the largest as observed during the simulation
(Fig. 5.27).

This concludes the assessment of model errors due to the interaction computations
based on wave height maps. The next step is to assess the quality of the different
GMD configurations based on the detailed error metrics computed from model
spectra at buoy location 45007. Figure 5.28 presents the wave height Hs, peak
frequency fp, mean direction θ, and directional spread σθ as a function of the
time for buoy location 45007. Presented are the results of the WRT method
(solid green line), G35d configuration (dashed green line), GMD3 (blue line)
and the DIA equivalent approaches (WW3, WAM and GMD1; dashed, sold and
dotted red lines, respectively).

Consistent with the results of the wave height maps, the WW3 configura-
tion shows an excellent representation of the wave height Hs of the computations
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Fig. 5.28 : Evolution in time of a) significant wave height Hs, b) peak fre-
quency fp, c) mean direction θ, and d) directional spread σθ at location
45007 for the Lake Michigan test case. Time in h from Oct. 6, 2009,
00z. Solid green line; WRT. Dashed green line: GMD in G35d config-
uration. Blue line: GMD3 configuration. Red solid line: GMD1. Red
dashed line: WW3. Red dotted line: WAM. Solid black line in panel c
represents wind direction.

with the WRT approach (Fig. 5.28a). This however, goes at the expense of a
rather poor representation of the peak frequency (Fig. 5.28b) underestimating
it by roughly 10%. This is consistent with earlier assessment of behavior of the
WW3 configuration (Tolman and Krasnopolsky, 2004). All DIA equivalent con-
figurations (all three red lines) introduce some errors in the mean direction in the
swell dominated period (after 30h in Fig. 5.28c), and systematically overestimate
the directional spread (Fig. 5.28d).

Finally, some examples of one and two dimensional spectral behavior will be
presented in Figs. 5.29 through 5.32. From the start of the test period (Oct. 6,
09z) through the middle of Oct. 7, the spectra remain mostly unimodal, with
distinct characteristics of wind seas. This is illustrated here in Figs. 5.29 and
5.30. The wind sea character of the spectrum is evident in the large range of
directions and frequencies with distinct wave energy, and in the typical shape
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Fig. 5.29 : Spectral behavior of various nonlinear approaches for output
point 45007. (a) Two-dimensional spectrum F (f, θ). (b) One-
dimensional spectrum F (f). (c) Steepness spectrum G(f).(d) Spectral
direction θ(f). (e) Directional spread σθ(f). (f) Source term snl(f).
Green line: exact (WRT) solution. Dashed green line: G35d. Blue line:
GMD3. Red lines: GMD1 (solid), WW3 (dashed) and WAM (dotted).
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Fig. 5.30 : Like Fig. 5.29 for Oct. 07, 06z
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Fig. 5.31 : Like Fig. 5.29 for Oct. 07, 18z

for nonlinear interactions for wind seas. The configurations equivalent to the
traditional DIA (red lines), result in spectra that are not sufficiently peaked (b
panels), that are too broad in directions (e panels), and have interactions that
are generally to weak or to broad in frequency space. The default setting for the
WAVEWATCH III model (WW3) results in spurious shift of the spectral peak to
higher frequencies (b and c) panels, corresponding to the error in fp as displayed
in Fig. 5.28, and as previously reported as an undesired feature of the default
WAVEWATCH III model (e.g., Tolman and Krasnopolsky, 2004).

During the second half of Oct. 7, wave conditions at location 45007 display
a separation of swell and wind sea. Early in this period, the swell is sufficiently
young and steep to produce a notable signature in the nonlinear interactions, as
is illustrated in Fig. 5.31 for 18z. The steepness spectrum (Fig. 5.31c) clearly
indicates that the lowest energy in the spectrum has lost some of its steepness
while transitioning to swell, particularly due to a directional narrowing of this
wave field due to dispersion (Fig. 5.31a,e), resulting in a more complex nonlinear
interaction than generally observed for a wind sea (Fig. 5.31f). Whereas the
GMD3 (blue line) and G35d configurations (dashed green line) by no means
represent the exact interactions (solid green line) perfectly, they are much more
realistic than the three traditional DIA configurations (red lines). At the end of
the test period (Fig. 5.32, Oct. 8 00z), the wind sea and swell have fully separated
(Fig. 5.32a). Whereas the energy density of the swell is much larger than that
of the wind sea, its steepness is much lower (Fig. 5.32b,c). Hence, the wind
seas dominate the nonlinear interactions, with a signature more representative
for wind waves, and a signature of swell at lower frequency showing up at almost
negligible intensity.
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Fig. 5.32 : Like Fig. 5.29 for Oct. 08, 00z

The high accuracy of wave height maps combined with the large errors of many
other parameters for the WW3 configuration clearly indicate that a traditional
wave-height-only model validation can be highly misleading. This is particularly
true in enclosed basins, where swell does not propagate over sufficiently long
distances to generate wave height errors in space associated with spectral shape
errors in the area of wave generation. A full error assessment using the error
metrics from the genetic optimizations (Table 5.1) more realistically shows the
G35d and GMD3 approaches far superior, with an error evolution with increasing
complexity of the GMD consistent with those found in the optimization tests.

5.3 Model economy

Finally, the numerical economy of the different GMD configurations is presented
in Table 5.1. All timing results are obtained on an IBM P6 supercomputer, using
32 processes for the computation. Only for the WRT computations, more pro-
cesses are used, and hence the normalized run time Tn can only be estimated. For
comparison, results are also obtained with an 64 bit Opteron cluster. Generally,
timing results on the cluster are more favorable for more complex GMD configura-
tions, as the less effective cluster communications make the relative contribution
of source terms to the run times smaller. Cluster run times are not presented
here.

The normalized run time Tn is obtained by dividing the run time obtained with
the GMD configuration by the run time obtained with the default wave model,
that is, using the WW3 configuration with the traditional DIA implementation.
When γ is defined as the fraction of the computing time used by the DIA in the
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Table 5.1: Synopsis of model performance for practical test cases for various
GMD configurations. Tn is the normalized model run time. All compu-
tations performed with GMD parameterization. Tn is normalized with
the default model settings in WAVEWATCH III, corresponding to the
traditional DIA in WW3 configuration. Weights for errors in α, f0 and
β set to 0 for hurricane run.

Hurricane L. Michigan
configuration Tn (-) εtot (%) Tn (-) εtot (%)

WW3 1.28 27.1 1.16 23.5
WAM 0.98 27.3 1.09 24.9
GMD1 1.15 26.6 1.10 21.8
GMD3 1.82 19.3 1.45 16.8
G35d 5.08 17.1 4.04 14.1
WRT 2800 ∗ — 370 ∗ —
∗: Estimated; additional resource needed to make model runs feasible.

default wave model configuration, the normalized run time can be estimated as

Tn = (1 − γ) + γXGMD , (5.1)

where XGMD is the expected factor of increase in run time for a single call to
the GMD routine compared to a single call to the traditional DIA routine, as
assessed in Part 3. For the WW3 configuration in Table 5.1, Part 3 suggest that
XGMD ≈ 2, and assuming that the corresponding integrations with the DIA and
GMD are identical for all practical purposes, γ can be estimated from (5.1) as

γ =
Tn − 1

XGMD − 1
. (5.2)

Thus, γ ≈ 0.28 or 0.16 for the hurricane and Lake Michigan cases, respectively.
The smaller relative importance of the nonlinear interactions (smaller γ) in the
latter case corresponds to a more modestly forced situation, combined with the
dynamic source term integration scheme of WAVEWATCH III. In this scheme,
the time step of integration for the source terms depends on the rate of change
of the spectrum. Strong forcing corresponds to rapid rates of change and small
time steps. The more weakly forced Lake Michigan case is therefore expected
to have larger source term integration time steps and hence a smaller relative
contribution of the source terms to the integration efforts (i.e., a smaller γ).

For other configurations of the GMD consistent with the DIA (i.e., the WAM
and GMD1 configurations in Table 5.1) identical computation effort is expected
for each individual source term computation. Nevertheless, different model run
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times may be found, because the dynamic source term integration scheme re-
sults in shorter model run times for interactions that result in smoother spectral
integration. For the WAM configuration, run times are 6-23% shorter than for
the WW3 configuration, and for the GMD1 configurations, run times are 5-10%
shorter, suggesting the the WAM and GMD1 configurations result in significantly
smoother model integration than the WW3 configuration.

For the GMD3 configuration, Part 3 indicates that XGMD ≈ 6, resulting in
estimated values of Tn from Eq. (5.1) of 2.40 and 1.80, respectively. Table 5.1
shows that actual model integration times are 24 and 20% faster, respectively. For
the G35d configuration Part 3 indicates that XGMD ≈ 20, resulting in estimated
values of Tn from Eq. (5.1) of 6.34 and 4.04, respectively. Table 5.1 shows that
actual model integration times are 20 and 32% faster, respectively, indicating that
the GMD1 and G35d configurations result in the smoothest model integration.

Note that a large difference are found in relative run times for the WRT
method. This appears to be associated with the limited spectral frequency range
in the hurricane test, which results in a strong shock in the spectrum for high fre-
quencies and low winds. In the Great Lakes test, the frequency range is extended,
effectively eliminating this shock. Thus, by using a larger spectral (frequency) do-
main computations using WRT are in fact cheaper and more realistic. Hence, the
timing results for the Great Lakes test should be considered more realistic, and
the G35d approach should be considered roughly 2 orders of magnitude cheaper
than the WRT method in terms of the total model run times.
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6 Summary and conclusions

The present study addresses the optimization of the Generalized Multiple DIA
(GMD) as defined in Tolman (2008b). Using initial optimization experiments
reported in Tolman (2009a), the GMD is expressed in terms of the traditional
variance spectrum, instead of in terms of an action spectrum, as the former
proved to be more accurate when objectively optimized. Also considered is the
nonlinear high-frequency filtering tool introduced in Tolman (2008b). This tech-
nique is used only after optimization for selected GMD configurations (i.e., the
G25d configuration), but is not explicitly optimized, nor considered during the
optimization.

In previous studies (Tolman and Krasnopolsky, 2004; Tolman, 2005) it has
been shown that a traditional optimization of a nonlinear parameterization based
on interactions for individual spectra does not guarantee good model behavior.
In fact, more accurate interaction approximations than the DIA were found to
result in unstable model integration behavior. Considering this, a ‘holistic’ opti-
mization was introduced in the latter papers where results of model integration
are optimized rather than interactions for individual spectra. In this approach,
spectra are saved from model integrations with the WRT methods, as well as from
model integrations with various configurations of the GMD. From these spectra,
errors in various parameters are computed. Form these errors a ‘cost function’ is
defined, which is then dynamically optimized.

A wide range of test parameters is used in this study, including mean (inte-
gral) wave parameters (significant wave height, peak frequency, mean direction,
directional spread), parameters associated with the one-dimensional spectrum
(energy and steepness spectra, direction and directional spread per frequency,
one-dimensional source term snl(f), zero-flux frequency, and energy levels in the
equilibrium and tail section of the spectrum), and two-dimensional spectral pa-
rameters (energy and steepness spectrum and nonlinear source term). Errors
for individual parameters are combined into a single error metric, favoring the
accuracy of the mean wave parameters (in particular Hs) most.

The test metrics are computed for a set of up to 9 idealized test cases. Six
of these cases consider deep water, three consider shallow water. Most cases
consider wave growth, since the critical aspect of the interactions to be repro-
duced is wave growth with appropriate and stable spectral shapes. The deep
water cases consist of traditional time- and fetch-limited cases, two cases with
turning winds, a slanting fetch case, and a case with wave growth in the pres-
ence of swell. The shallow water test cases consist or a wave growth in rapidly
decreasing water depths in homogeneous conditions, and either a wind sea of a
swell dissipating on a beach. These nine tests produce a rich set of spectra, in-
cluding effects of wave growth, shearing spectra, swells, conditions approaching
wind-sea swell separation (in turning wind cases) and some limited interactions
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between wind sea and swell. It is expected that these cases are representative
for more complex conditions in nature. After optimization of the GMD for these
test cases, it is necessary to asses model errors for validation cases. Such cases
need to be independent of the optimization tests, and should cover more realistic
(two-dimensional) wind and wave conditions. Note that optimization has been
done incrementally here. Good shallow water behavior can only be expected if
the deep water behavior (boundary conditions) are accurate. Hence, it is sensible
to treat deep and shallow water optimization separately, and to consider deep
water cases first.

For simple GMD configurations with a small number of free parameters, it is
economically feasible to map the model error in the full parameter space of the
GMD. For instance, considering a conventional DIA configuration in deep wa-
ter, only the λ parameter of the quadruplet and the proportionality constant Cd

need to be optimized. A course optimization of this two-dimensional parameter
space would consider O(102) parameter configurations to be considered, a more
accurate mapping requires O(103 − 104) configurations. This kind of mapping
has been performed here to establishes valid ranges of parameters, and to assess
the error behavior of the various parameters considered. Such an experiment has
shown that there are optimum areas rather than a single location in parameter
space for many parameters, and that not all parameters can be optimized simul-
taneously in a traditional DIA configuration (consistent with results from Tolman
and Krasnopolsky, 2004). Such a mapping experiment has also been used here
to validate more advanced optimization techniques.

Full mapping of the error in parameter space rapidly becomes economically
unfeasible for more complex GMD configurations. For instance, a traditional DIA
configuration with 3 representative quadruplets in deep water has 6 free param-
eters, requiring roughly O(106) parameter configurations for a coarse description
of parameter space. On the presently available supercomputer at NCEP, using
5 nodes and 320 parallel processes to compute, such a volume of computations
takes several days up to a week to compute, and hence is still feasible. A better
resolution of parameter space will require O(109) configurations to be assessed,
or of the order of several years to compute, and hence is not economically feasi-
ble. For an extended three-parameter quadruplet definition with 5 representative
quadruplets the number of free parameters becomes 20, and the number of con-
figurations to be considered in a full mapping exercise can be roughly estimated
as O(1030), or, conservatively O(1020) years to complete. Even the largest super
computer presently available completely dedicated to this problem would require
at least O(1012) years for this computation to be completed.

The inability to fully map errors in parameter space requires more directed
search algorithms to be used to estimate optimum parameter settings for the
GMD. A traditional method would be a steepest descent method. Previous stud-
ies have shown that such methods do not work well for complex GMD con-
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figurations, because errors are not well-behaved in parameter space with some
discontinuities of errors and many local minima.

In Tolman and Krasnopolsky (2004) and Tolman (2005) a genetic optimiza-
tion approach was used to objectively estimate near-optimal parameter setting
for predecessors of the present GMD with up to 15 free parameters, This method
has been expanded upon in the present study, and the resulting genetic opti-
mization approach has been shown to be able to produce near-optimum GMD
configurations with more than 20 free parameters by considering typically O(106)
configurations. This makes the genetic optimization approach a very powerful
tool to optimize the GMD; without this approach, it would not be possible to
objectively optimize the GMD with such a level of complexity.

A genetic optimization approach can be interpreted as a directed random
search, loosely based on principles of natural selection. A realization of a GMD
configuration is defined with a string of numbers defining its free parameters, A
population is generated defining each member of the population by it own string
of numbers, or ‘genetic material’. For each member of the population a ‘fitness’ is
computed, in this case based on the error metric for all test cases and parameters
considered. The fittest members of the population are allowed to remain in the
population and/or ‘procreate’. ‘Offspring’ of these fit members are generated by
combining the genetic information of parents using both genetic crossover and
mutation. For the new generation, the fitness for each member is computed, and
the process is repeated until a set number of generations is reached, or until no
further convergence to fitter populations is found.

A genetic optimization estimates rather than obtains the optimum solution.
Due to its inherent random nature, it is prudent to repeat each experiments
with a range of different random initial conditions. This will indicate the ability
of the population size, number of generations, and general setting of the ge-
netic optimization to reach a reasonable solution. It will also indicate if multiple
near-optimum solutions can be found. A key element in successful genetic opti-
mization is retention of genetic diversity in the population. Counter-intuitively, a
better initial population and/or large initial population may lead to rapid initial
convergence, but at a cost of rapid loss of diversity and a loss of capability to
continuously improve populations. Similarly, too small a population may have
insufficient diversity to sustain improvement. Hence, genetic optimization by
itself requires some trial and error to obtain reasonable population sizes and pa-
rameters settings. Considering this, it is prudent to incrementally increase the
complexity of the GMD to be optimized. Furthermore, a genetic optimization
approach is generally efficient to obtain near-optimum results, but may not be
efficient to achieve final convergence to the (local) optimum solution. It is there-
fore prudent and efficient to augment a genetic optimization experiment with a
steepest descent optimization starting from the best configurations(s) obtained
with the genetic optimization. A final reason to incrementally increase the com-
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plexity of the GMD is to find the optimum balance between cost and accuracy of
a GMD, and to assess if there is a saturation point where additional complexity
does not result in additional accuracy.

Considering the above, the first optimization experiments for the GMD con-
sider the traditional DIA configuration with one or more quadruplets. Deep water
optimization in such conditions is expected to produce results similar to the deep
water optimization for such a DIA configuration in Tolman and Krasnopolsky
(2004) and Tolman (2005). The first experiments considered optimization of λ
and Cd for an increasing number of quadruplets nq = nq,d. As in the latter papers,
it is found that increasing nq to 2 and 3 significantly increases the accuracy of
the GMD, but that beyond this range of nq additional increase of accuracy of the
GMD is small or non-existent. Due to the simplicity of the quadruplet layout, this
GMD configuration allows for a systematic way to use the quadruplet to sample
phase space in the spectrum, by selecting values of λ and then optimizing Cd

only. Such an approach is similar to the SRIAM approach (e.g., Komatsu, 1996;
Tamura et al., 2008), but has not been tried before in the context of a holistic
genetic GMD optimization. Here, experiments have been performed by sampling
the phase space with 7 or 13 preset values of λ. These experiments have shown
that the most accurate GMD in such a configuration switches off many preset
quadruplets and leaves no more than 5 quadruplets active and contributing. This
results in a configuration with the same accuracy as a GMD with three quadru-
plets where both λ and Cd are optimized. Hence, the saturation of improvement is
clearly related to the GMD, and not to the optimization approach. Furthermore,
freely optimized quadruplets reach the same accuracy as preset quadruplets with
smaller nq, and are therefore preferable for reasons of model economy. Whereas
these results are obtained for the traditional quadruplet configuration only, it will
be assumed that they hold for more complex quadruplet configurations too.

Attempting to optimized the GMD with a traditional quadruplet configura-
tion for shallow water has never been attempted before, and hence breaks new
ground. It is shown that a properly optimized shallow water GMD indeed im-
proves the quality of the model results, and is able to reproduce the shallow water
spreading of swell in frequency space. However, this spreading in extremely shal-
low water does generally result in spurious spectral peaks, making this approach
not yet sufficiently mature for practical wave models. Sampling spectral space
makes it possible to suppress the spurious behavior somewhat, but cannot easily
be applied to more complex quadruplet layouts. Sampling of spectral space in-
dicates that no additional accuracy can be gained from using more than 5 or 6
shallow water quadruplets, but that all parameters of these quadruplets should
be independently optimized, and should not be based on optimum deep water
quadruplets. Note that the spurious behavior described above only occurs in
extremely shallow water (d ≤ 3m, for waves with fp ≤ 0.06Hz), and may well be
improved by a more detailed assessment of scaling considerations.
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The natural next step in optimizing the GMD considers more complex quadru-
plet definitions. Based on previous work, it is known that such configurations with
a single quadruplet generally do not result in stable model integration. Hence,
optimization for deep water started with nq,d = 3. Economy of the optimization
for now has limited the maximum number of deep or shallow water quadruplets to
6. Adding complexity to the quadruplet has little impact on mean wave parame-
ters in the test cases, but has a large impact on errors in the spectral shape. The
two-parameter quadruplet definition is less accurate than the three parameter
definition. Furthermore, the two-parameter definition needed additional filtering
to suppress spectral noise in some deep water tests (unlike the three-parameter
definition). Combined with near-identical costs for the computation of an in-
dividual interaction, this makes a three-parameter quadruplet definition more
suitable to use. The optimum deep water GMD configuration chosen here consist
of 5 deep water quadruplets with the full three-parameter quadruplet definition.
This configuration proved extremely accurate. The only identified shortcoming
for the test cases in the genetic optimization is the tendency to produce minor
spurious bi-modality in steepness spectra, and the presentation of multi-modality
in spectra at extremely short fetches.

The optimized GMD with the full quadruplet definition and 5 deep water
quadruplets is also used as the starting point for the shallow water optimiza-
tion. Going from the single parameter to the three parameter quadruplet def-
inition again improved the quality of the wave model in shallow water. Some
improvement is found by adding an optimized Cs to each deep water quadruplet,
but, as before, much more improvement is obtained when separate shallow water
quadruplets are defined. Diminishing gain is obtained for nq,s ≈ 5. Whereas
the improvements are clear, and occur for a large range of depths, some spurious
behavior remains in extremely shallow water. This identifies the shallow water
GMD as a major step forward in shallow water wave modeling, but not quite
ready for operational wave modeling.

Testing the present GMD with conditions used in the genetic optimization
creates dependent tests, that may not be representative for practical wave model
applications. For this reason, some selected GMD configurations have been tested
/validated against more realistic forecast conditions. Considering the above, it
is sufficient for now to consider only realistic deep water tests. Since the present
GMD for deep water (Cs ≡ 0) and the previous DIA naturally ‘switch off’ in
shallow water, such an approach can be used directly in a practical wave model.
The two deep water tests considered here are an artificial hurricane modeled with
three telescoping and moving nests (Tolman and Alves, 2005; Tolman, 2008a),
and a storm system on Oct. 6-7, 2009 on Lake Michigan.

Both practical test cases show that the findings from optimizing the GMD
and the corresponding results of test cases implicit to the optimization apply di-
rectly to practical wave modeling cases. GMD configurations consistent with the
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traditional DIA show notable errors in mean wave parameters. The GMD3 con-
figuration with three traditional quadruplets greatly reduces the errors in mean
parameter, but leaves significant errors in the spectral parameters. The G35d
configuration with 5 quadruplets using the full three-parameter quadruplet defi-
nition is accurate in mean wave parameters as well as spectral wave parameters,
albeit with the potential for minor spurious bi-modality in the steepness spectra.
The realistic test cases also identify and quantify errors incurred by a traditional
DIA approach in practical applications, and the level up to which they can be
removed by more accurate GMD configurations.

The hurricane case shows that DIA configurations systematically overesti-
mate wave heights Hs to the left front of the hurricane, while systematically
underestimating Hs to the right and in front of the hurricane. Depending on the
configuration of the DIA, overestimations can be as large as 30%, and underes-
timations as large as 20%. These errors in Hs are large enough to be observed
in practical conditions (see, e.g., Chao and Tolman, 2010), even with significant
errors in hurricane wave forcing in operational wave models. The tradition DIA
configuration with three representative quadruplets (GMD3) also results in wide
spread errors in Hs, but with errors generally well below 10%. The most complex
GMD configuration considered here (G35d, with five three-parameter quadru-
plets) displays localized wave height errors, with errors generally well below 5%.
In the hurricane test case wave height errors are fairly representative for all er-
ror behavior, although spectral errors more clearly show a distinction in model
accuracy between the GMD3 and G35d configurations of the GMD.

In the Lake Michigan test case, wave height errors associated with the DIA
configurations of the GMD are somewhat smaller, but still of the order of ±15%.
In general such errors should be notable in a full model validation. Somewhat
surprisingly, the Lake Michigan test suggest that the traditional DIA configura-
tion used as the default model setting in the WAVEWATCH III model (GMD
configuration WW3) results in highly accurate wave heights. These wave height
errors, however, are accompanied by large errors in other mean parameters and
in the spectral shape. This makes a traditional validation of a wave model based
on Hs only highly misleading, specially in enclosed basins.

In Part 3 it was shown that the more complex implementation needed for the
GMD is typically twice as expensive to compute as an optimum traditional DIA
implementation for a similar configuration. Using an extended quadruplet defini-
tion doubles the number of quadruplet realizations for a single configuration, and
hence is four times as expensive to compute. Adding representative quadruplets
has a simple cumulative impact on computational costs. Thus, for a single inter-
action to be computed, the WW3, WAM and GMD1 configurations are 2 times
as expensive to compute compared to the traditional DIA, the GMD3 configu-
ration is 5 times as expensive, and the G35d approach is 20 times as expensive.
Estimating that the nonlinear interactions are responsible for roughly 20% of the
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computational costs of a wave model, a first estimate of corresponding increases
in model run times are factors of 1.2, 2.0, and 5.0, respectively.

However, the total computational cost of the WAVEWATCH III model is
also influenced by the dynamic time stepping scheme used to integrate the source
terms (Tolman, 1992). In this scheme, smoother source terms will result in longer
integration time steps and hence shorter computational times. The practical test
cases have been used to assess the practical economy of the new GMD con-
figurations, including the effects of smoothness of integration. The WAM and
GMD1 configurations are shown to be computationally cheaper than the tradi-
tional WW3 approach, suggesting a smoother model integration. Computational
costs of the GMD3 and G35d configurations are also less than predicted based
on costs of individual interactions, and hence also represent smoother integration
than in the default wave model.

The GMD3 configuration increases the computational cost for the more typ-
ical Lake Michigan case by a factor of 1.5, and the G35d approach increases the
corresponding computational costs by a factor of 4. Whereas the latter is a sig-
nificant increase in computational costs, it represents feasible configurations for
operational wave models at NCEP, and more importantly perhaps, it results in
a model that is typically two orders of magnitude cheaper to run than a model
using the WRT implementation. Note that the G35d approach could tentatively
be sped up by combining it with a Neural Network approach, as suggested in
Tolman and Krasnopolsky (2004).

Even with these positive results, this is only a first attempt at fully opti-
mizing a GMD for practical wave model applications. Particularly the shallow
water aspects need more attention, to ensure robust model behavior even for the
smallest water depth and longest frequencies in the model. Some improvements
that could be considered are

• Revisit scaling function to get more realistic behavior in the most shallow
water, and possibly identify more individually scalable regimes.

• Consider optimizing m and/or n per quadruplet.

• Combine deep and shallow test to get better overall results; this may in-
troduce deep water quadruplets that have Little impact on deep water but
may impact results for intermediate water depths.

• Consider adding the high-frequency filter to the optimization, either to
make spectra smoother, or to enforce β behavior in the G35d and similar
configurations.

• Look at details of genetic optimization, particularly a) saving a smaller
part or of existing generation or none at all, and b) use smarter initializa-
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tion where more good quadruplets from nq = n − 1 are used for nq = n
experiment.

• Add triad interactions in shallow water tests, either as part of the optimiza-
tion, or as a another non-optimized source term.
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