U. S. Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Centers for Environmental Prediction
5200 Auth Road Room 207
Camp Springs, MD 20746

Technical Note

WAVEWATCH III ® development best practices .

Hendrik 1. Tolman*
Environmental Modeling Center
Marine Modeling and Analysis Branch

Version 0.1, May 2010

THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR INFORMAL
EXCHANGE OF INFORMATION AMONG NCEP STAFF MEMBERS

T MMAB Contribution No. 286.
! e-mail: Hendrik.Tolman@NOAA .gov

This page is intentionally left blank.

Abstract

This report describes best practices for code development of WAVE-
WATCH III ®. This includes guidelines for packaging of codes delivered
by general users to NCEP according to the WAVEWATCH 11T license, as
well as instructions for co-developers on the use of the subversion deposi-
tory at NCEP. The report addresses codes, documentation and manuals.

Change log

version ‘ SVIl rev. ‘ date ‘ comment

0.1 7868 | May 14, 2010 | Initial MMAB No. 286.
No regression testing yet.

Acknowledgments. Code management for WAVEWATCH 1III is provided by
NCEP. Arun Chawla provided a first filter for this report.

This report is available as a pdf file from

http://polar.ncep.noaa.gov/waves

i

Contents

Abstract,
Acknowledgments
Table of contents,

1 Introduction

2 Programming style

3 Adding to the model

4 Regression testing

5 Manual and documentation

6 Subversion repository

References,

il

i
iii

11

13

15

This page is intentionally left blank.

1 Introduction

The WAVEWATCH III ® wind wave model has a history dating back to the
second half of the 1980s. It’s history started with the development of the WAVE-
WATCH model at Delft university of technology (Tolman, 1989, 1990, 1991).
The next step of development occurred at NASA, Goddard Space Flight Center
in the early 1990s, with the development of WAVEWATCH II. This model was
explicitly designed for (vector) super computing, and focused on improved nu-
merics (Tolman, 1992a,b). Development of WAVEWATCH III at NCEP started
in 1993. Compared to previous WAVEWATCH models, this model uses modified
basic equations, and introduces the present model architecture. This model uti-
lizes vector optimization, together with OpenMP or MPI parallel optimization,
and hence can be run efficiently on most modern computer architectures. With
model version 3.14, WAVEWATCH III has been trademarked and copyrighted,
and has been distributed under an open-source style license (see section 1.2 of
Tolman, 2009, or the web site!). Henceforth, WAVEWATCH III will be denoted
as WW3.

Three public releases of WW3 have been made available (Tolman, 1999, 2002,
2009). This best practices report was first provided with model versions 3.14 for
two reasons. First, coding standards are needed to foster and support community
model development. This has become particularly important with the National
Oceanographic Partnership Program (NOPP) project to improve all basic wave
model source terms, which will run from 2010 through 2014, and which will use
WW3 as a main development vehicle. This means that several teams will work
simultaneously on the WW3 code. Second, there is a need for unifying coding
approaches within NCEP. A first set of standards has been developed for the
Community Radiative Transfer Model (CRTM) as presented in Van Delst (2008).
Whereas it is unrealistic to retrofit all NCEP codes to a completely homogeneous
coding standard due to the shear size of legacy codes, all basic precepts should be
the same, and are consistent between the present report and Van Delst (2008).

From the beginning, WW3 has been envisioned as a modeling framework,
with various options for numerical and physical approaches, both for operational
and research applications. With a focus on operations at NCEP, selections of
numerical and physical approaches are done at the compile level of the code.
This limits the complexity of the source code that is used in operations. For
example, complex exact interaction codes are not compiled into the operational
models at NCEP, and hence do not need to be maintained in the operational
code versions. Compile level code selections are made using the native WW3
preprocessor and ‘switches” in the source code, as described in full in the WW3
manual (Tolman, 2009, or more recent versions).

Starting with the release model version 3.14, we are maintaining the code

! http://polar.ncep.noaa.gov/waves/wavewatch /license.shtml

using subservion (Collins-Sussmann et al., 2004). The master version of WW3
will be maintained and supported at NCEP. With the licensing of model version
3.14, users that develop code and/or modifications for WW3 are obligated to
offer these back to NCEP, relative to the most recent version of WW3 available
to them?. NCEP will then decide if such modifications and additions will be
included in the master version of WW3, and will be responsible for including it
in the subversion depository. Alternatively, collaborators on well defined projects
and with proven development capability will be considered as ‘co-developers’, and
will be given direct access to our subversion server, and thus to developmental
version of WW3. NCEP will invite collaborators to become co-developers, and
will considered requests to become co-developers.

In this context, coding standards, best practices for upgrading parts of WW3
and for adding new pieces to WW3, regression testing, and maintenance of docu-
mentation are essential. These issues are approached in Sections 2 (also including
copyright statements), 3 4, and 5, respectively. Finally, Section 6 discusses stan-
dards of code management using the subversion server at NCEP.

Some formatting practices for the WW3 manual are used in this report. The
file font will be used to identify files, scripts and command line entries. The CODE
font is used to identify source code. Previous experience with WW3 is expected,
and the use of, for instance, optional switches in the code, will not be explained
here in detail.

2 Public release or research version on svn server, depending on user access.

2 Programming style

WW3 is written in ANSI standard Fortran 90, fully modular, and with an inter-
nal dynamic data structure exclusively using use-associated data modules. All
modules are internally documented with a style of documentation as illustrated
in Fig. 2.1 and 2.2 for subroutines and modules, respectively. Examples of this
can be found throughout the source code, and templates are also provided in
‘user slot’ routines for source terms and propagation schemes.

Is should be noted that WW3 consists of incomplete (’.ftn’) FORTRAN files
that require standard WW3 preprocessing. All changes and additions should be
made in these files, not in extracted true FORTRAN files (for details see the
manual).

The following is expected of codes provided to NCEP for inclusion in the
official version of WW3:

i) Fully document the code following the outline described above.

ii) Follow the coding style of WW3, in particular :

e For readability, code is written following the use of columns as in
fixed format Fortran, even though codes are technically written
in free format. Use typical indent strategies for loops and logical
structures.

e Code intended as permanent code is written in upper case, tempo-
rary (test) code is written in lower case. Note that we encourage
the inclusion of permanent test output to be activated at compile
time using the WW3 compile switches? like ‘!/T’. The latter test
output should be coded in upper case as a permanent part of the
code.

iii) Maintain an update log at the top of each module and for each individ-
ual routine or function, and update the last update date in the header
of each module, function and routine, as has been done in the distribu-
tion version of WW3. If a module only contains one program element,
only a single update log needs to be maintained. This is a legacy from
code management before using subversion, but will be retained until
further notice.

iv) Each subroutine, function or groupings should be embedded in a mod-
ule to allow for full use association and internal automatic interface
checks in Fortran compilers. File naming conventions include:

3 See manual for details on use of compile level switches.

File names for elements of the basic wave model should start with
w3.

Program elements related to the multi-grid capability should start
with wm.

Module file names should end in md (before the file extension).

Files with main programs should be stored in file names starting
with ww3_.

The file extension.ftn identifies code elements that need to be pre-
processed by the WW3 preprocessor w3adc to activate switches.

Files with ready-to-use source code (no need for the WW3 prepro-
cessor) are identified by the extension .f90. This includes external
packages interfaced to WW3.

As examples w3snl2md.ftn is a module of the basic wave model (one
of the S,; source term options) that needs to be preprocessed by the
WWS3 preprocessor. ww3_grid.ftn contains the main program for the
grid preprocessing. mod_constants.f90 is a part of a user-supplied pack-
age that does not require WW3 code preprocessing. Note that the only
file not following the WW3 naming convention is constants.ftn, which
contains a module with physical constants.

For now, we have been using the Fortran 90 standard. Required coding
practices include:

Use free format with style as described above.
Use IMPLICIT NONE in each module.

Do not use COMMON declarations. Eventually all major data struc-
tures should become part of the WW3 dynamical data structures
(see manual), which are all contained in separate modules, and can
be used by use association. See section 3 for suggestions on how to
deal with these data structures during (initial) code development.

Each module used in a given program element will need to be use
associated with a USE statement. Where feasible, use
USE module_name, ONLY: wused names

to avoid unintended use of variables in modules.

For the same reason, use PRIVATE for general declarations in mod-
ules.

Declare INTENT on all dummy argument list items.

Do not use tab characters in the code (not in Fortran character
set).

e Name ENDs fully both for readability and because several compilers
will require this.

e Do not use numbered DO loops.
e Use CYCLE and EXIT instead of GOTO.

e Use CASE statements with a default rather than IF statements for
multiple selection tests.

e As a holdover of days long gone, short variable names have been
used throughout the WW3 code. Although this makes it easy to
keep documentation readable, it does not necessarily make it easy
to understand the code at a glance. Feel free to use longer variable
names to make the code more easily understandable.

e Up to now, there has been no need for explicit KIND declarations
in WW3. If such declarations are needed, follow the standard set
in Van Delst (2008).

vi) Provide documentation for the modules to be included in the WW3
manual. The manual is written in KTEX. Required manual elements
to be provided are

e Description or update of basic equations / physical parameteriza-
tions as needed.

e Description or update of numerical approaches as needed.

e Update of system documentation including description of param-
eters in the dynamical data structure of WW3.

The coding style does not imply that existing packages that are attached to
WW3 need to be re-written in this style. However, it is strongly recommended
that any such package should be fully documented inside the code. Typically, a
user provided package will require an interface routine to WW3. Such an interface
routine is expected to conform to the WW3 coding practices.

Note that the NWS claims copyright for all main elements of WW3, and
generally will claim copyright for interface routines. Providers of packages to
be included with the distribution of WW3 are encourage to provide copyright
statements and disclaimers in these packages as appropriate (as NWS will not
claim copyright of such packages).

SUBROUTINE W3XXXX

1/ + t
'/ | WAVEWATCH III NOAA/NCEP |
1/ | John Doe

v/ | FORTRAN 90 |
v/ | Last update : 01-Jan-2010 |

v/ 01-Jan-2010 : Origination. (version 4.xx)

! 1. Purpose :
. Method :
3. Parameters :

N

Parameter list

4. Subroutines used :

Name Type Module Description

STRACE Subr. W3SERVMD Subroutine tracing.

5. Called by :

Name Type Module Description

Error messages :
Remarks
Structure :
Switches :

© 00N>

!/S Enable subroutine tracing.

10. Source code :

v/ - == /
/8 USE W3SERVMD, ONLY: STRACE
v/
IMPLICIT NONE
v/
v/ - == /
!/ Parameter list
v/
v/ /
!/ Local parameters
v/
/8 INTEGER, SAVE :: IENT = 0
v/
v/ /
v/
/8 CALL STRACE (IENT, ’W3XXXX’)

1/
!/ End of W3XXXX /
v/

END SUBROUTINE INSBTX

Fig. 2.1 : Documentation template for subroutines. Note that each subrou-
tine is expected to include a call to the STRACE subroutine to enable
subroutine tracing inside WW3, 6

'/ - /
MODULE W3XXXXMD

v/ + +

v/ | WAVEWATCH III NOAA/NCEP |

1/ | John Doe

v/ | FORTRAN 90 |

1/ | Last update : 01-Jan-2010 |

v/ + +

v/

v/ 01-Jan-2010 : Origination. (version 4.xx)

v/

v/ Copyright 2010 National Weather Service (NWS),

v/ National Oceanic and Atmospheric Administration. All rights

1/ reserved. WAVEWATCH III is a trademark of the NWS.

v/ No unauthorized use without permission.

v/

! 1. Purpose :

! 2. Variables and types :

1

! Name Type Scope Description

1

1

!

! 3. Subroutines and functions :

!

! Name Type Scope Description

!

! W3XXXX Subr. Public

1

!

! 4. Subroutines and functions used :

!

! Name Type Module Description

!

! STRACE Subr. W3SERVMD Subroutine tracing.

1

1

! 5. Remarks :

! 6. Switches :

1

! !/S Enable subroutine tracing.

1

! 7. Source code :

v/

'/ - /

v/
PRIVATE

v/
CONTAINS

v/ - --- /
SUBROUTINE W3XXXX

v/

!/ End of w3XXXX /

v/
END SUBROUTINE W3XXXX

v/

!/ End of module W3XXXXMD /

v/

Fig. 2.2 : Documentation template for modules.

END MODULE W3XXXXMD

adapted as appropriate.

Copyright statement to be

This page is intentionally left blank.

3 Adding to the model

WW3 is designed as a highly plug-compatible code. Source term and propaga-
tion approaches can be included as self-contained modules, with limited changes
needed to the interface of routine calls in W3SRCE, W3WAVE, and in the point post-
processing programs only. General users can experiment with new approaches
in user slots that are provided as dummy model slots like W3SNLX in the file
w3snlxmd.ftn for the nonlinear interactions. General users are expected to provide
these ‘user slot’ routines to NCEP for inclusion in subsequent versions of WW3,
following the instruction in this report and in the documentation of routines like
W3SNLX. Such codes should be self-contained in the way described below.

When providing a module for a source term like W3SNLX or for a propagation
scheme the following programming guidelines should be followed:

i) Follow coding guidelines as outlined in the previous section.

ii) Provide a file with necessary modifications to W3SRCE and all other
routines that require modification.

iii) Provide a test case with expected results.
Furthermore, the module needs to be self-contained in the following way.

i) All saved variables connected with this source term need to be declared
in the module header. Upon acceptance as permanent code, they will
be converted to the WW3 dynamic data structure.

ii) Provide a separate computation and initialization routine. In the sub-
mission, the initialization should be called from the computation rou-
tine upon the first call to the routine. Upon acceptance as permanent
code, the initialization routine will be moved to a more appropriate
location in the code (i.e., being absorbed in ww3_grid or being moved
to W3IOGR).

When such packages are provided to NCEP, NCEP may choose to not include
the package, or to provide the package as a ‘user slot routine’ like W3SNLX, with
some minor work of users required to install these routines, or may choose to
fully integrate the routines as a standard option in WW3.

Co-developers of WW3 with access to the subversion server are expected to fully
integrate the new modules in the experimental versions of WW3, using software
selection switches as provided by the NCEP code managers. It is, nevertheless,
strongly recommended that initially data structures are kept internal to the mod-
ules that are being developed, and that data for the modules are only included

in the dynamic data structure of WW3 when the module is mature. This will
make code development and unification much easier when multiple developers
are working on the code simultaneously.

The above approach are applicable to inherently modular elements of WW3 such
as source terms or propagations schemes. For more intricate changes to the code,
please consult the WW3 code managers* on how to proceed with developing and
providing code upgrades.

4 Mail to NCEP.EMC.wavewatch@NOAA .gov

10

4 Regression testing

Regression testing standards have not yet been defined, and this section is presently
a placeholder only.

11

This page is intentionally left blank.

12

5 Manual and documentation

The WW3 manual and other WW3 documents like this report are written in
ETEX. Since these are dynamic documents, the corresponding files are maintained
in svn, together with the WW3 source code, script and auxiliary files. Because
the manual is rather large, it has been stored in several .tex files. The main files
making up the manual are

manual.tex Main .tex file, mainly combining the .tex files below into
the complete manual.

defs.tex User defined IXTEX constructs used in the manual.

start.tex Title page and table of contents set up.

intro.tex Chapter: Introduction.

eqs.tex Chapter: Governing equations.

num.tex Chapter: Numerics.

run.tex Chapter: Running the model.

impl.tex Chapter: Installing the model.

sys.tex Chapter: System documentation.

more.tex Appendix: Managing multiple model versions.

tstep.tex Appendix: Setting time steps.

nest.tex Appendix: Nesting.

mpi.tex Appendix: Compiling MPI versions of the model.

move.tex Appendix: Moving grid options.

fig XXX X tex Various figures made directly using KTEX.
inp_XXXX tex, inpg_ XXXX.tex

Example input files for WW3 programs used in run.tex.
XXXX.eps Various encapsulated postscript graphics.
manual.bib BibTex database with references used in the manual.
jas.bst Bibliography style file used for the manual.

Apart from the files making up the manual, a support script is provided:

make_inps.sh Convert input files for WW3 programs to IXTEX file for
use in the manual (e.g., convert the model input file
ww3_grid.inp to inp_grid.tex). This script assures that
the example input files provided with the code are the
files displayed in the manual.

13

Note that the manual consist of both a conventional manual and a basic sys-
tem documentation. The following standards should be used in writing KTEX
contributions to the manual:

e Use American spelling and grammar.

e Use dynamic references to equation, chapter and section numbers, etc. Do
not use any hardwired reference numbers when referring to equations, sec-
tions etc.

e Use BibTex exclusively for references to other work. Do not write any
references directly into the text.

e Do not use excessive line lengths in the .tex files. We typically use a maxi-
mum line length of 78 characters and ‘auto-fill-mode’ when writing or up-
dating .tex files using emacs.

e When adding contributions to the manual, add a note of the update to
the introduction, so that users of the public releases have a concise log of
upgrades since the previous model release.

e If you have no I{TEX capability or experience, contact the WW3 code man-
agers to determine an acceptable method of delivering contributions to the
manual.

For general users we will provide a recent manual package when they are ready
to provide their manual contributions. For co-developers, the most recent version
of the manual will be available on the svn server.

WARNING

This guide and other XTEX WW3 documents like the manual use
the svn package for IXTEX. This package is generally not automat-
ically installed with EXTEX and therefore might result in failure of
compiling the .dvi files. The package is available from the CTAN
web site (http://www.ctan.org).

WARNING

14

6 Subversion repository

Starting with model version 3.14, WW3 in maintained using subversion (Collins-
Sussmann et al., 2004). All EMC codes are either on,or are being transferred to
the EMC subversion server

https://svnemc.ncep.noaa.gov

Access to this server requires an account and password. The WW3 model is
maintained in

https://svnemc.ncep.noaa.gov/projects/ww3

In the WW3 directory, the conventional trunk, branches and tags directories have
been created, The trunk directory contains the main model development, tags
contains model releases (formal, internal and beta testing), and branches contains
work space for individual developers (as well as maintenance of released versions).
For instance, Hendrik’s work space is identified as

https://svnemc.ncep.noaa.gov/projects/ww3/branches/hendrik

Co-developers will get read access to the trunk and tags, and write access to their
designated directory in branches. In trunk (and tags), we have set up directories

docs Work space for shared manuscript writing.

model Model files as previously distributed as .tar files.
manual ETEXfiles and graphics files for the manual.

guide ETEXfile for this guide.

utilities Additional utilities such as the grid generation package.

In the model directory, subdirectories aux, bin, ftn, inp and test are created,
containing the same files as in the previous model distributions. To install WW3
from the subversion repository, a new script

install_ww3_svn

has been created, which replaces the script install_ wwatch3 used to install he
model from .tar files. This script will first fill the five directories svn/aux through
svn/test with all the files from the svn repository, and will then continue to set
up the model identical to the model setup from the tar files. The only difference
is that distribution files in, for instance the bin directory, now are linked to the
actual files in the svn/bin directory. Thus,

15

svh commit

called from the svn directory will update the repository. Note that this implies
that new files need to be added in the svn directory first, and then need to be
added as links in the conventional directory. The script install_ ww3_svn can be
used for either an initial install, for updating the working copies from the svn
repository, and for updating link to the local svn directory.

The script install_ww3_svn needs to reside in the main WW3 directory. Upon
first install, this script can be pulled from

trunk/model /bin/install_ww3_svn

If this script is found to be identical to the local work copy in the local svn/bin
directory, it will be replaced with a link to the latter, so that modifications to
the script will also be version controlled with svn.

Co-developers will have read access to the trunk and tags, and will have read
and write permission to their workspace in the branches. Read access to the latter
work space will be set as requested by the co-developer. NCEP code managers
will have read access throughout, and will be responsible for merging mature
codes into the trunk. As mentioned above, co-developer will be responsible for
providing mature upgrades relative to the most recent upgrade of the trunk.

To fully use the potential of subversion, it is critical that detailed commit
logs are maintained. As with the CRTM, WW3 commit logs should follow the
GNU ChangeLog format®. An example of a log entry is given in Fig. 6.1. The
log entry should mention each file that has been changed. The first line of each
block should contain the subdirectory name. The log entry should mention every
file that has been changed. For every file, every procedure changed should be
named in full (no wildcard) to enable searching the log. We are aware that some
duplicity is introduced by also asking for a change log entry in the actual source
files. The latter is typically only a one-line cryptic description. For now, this
change log will also be maintained because it refers to the WW3 version number.
If the commit logs are properly maintained, the Changel.og will be provided with
future releases, at which time we may discontinue the habit of providing simple
change logs in the source files.

Finally, we are using Trac® as a web-based management tool for the development
of WAVEWATCH III. The Trac pages are found at

https://svnemc.ncep.noaa.gov/trac/ww3

® http://www.gnu.org/prep/standards/standards.html#Change-Logs
6 http://trac.edgewall.org/

16

ww3/branches/hendrik/workcopy/model/aux subdirectory
* spec_ids: File removed, as it was eroneously added to the repository with
the initial import of model version 3.14.

ww3/branches/hendrik/workcopy/model/bin subdirectory
* install_ww3_svn: New script to install wave model from svn reporitory.

ww3/branches/hendrik/workcopy/guide subdirectry (new subdirectory)
* report.tex: the latex file with the guide
* report.bib: bibtex bibliography information for guide

ww3/branches/hendrik/workcopy/model/ftn subdirectory
* w3sbtxmd.ftn: added copyright statement
(w3sbtx): cosmetic changes
(insbtx): cleared typos from documentation

Fig. 6.1 : Example of commit log entry following the GNU ChangeLog for-
mat.

and are accessed with the user name and password of the svn pages. The front
page is a wiki page. Trac gives a web-based way to access files in subversion,
including a time line of submissions to subversion. Additional tools include a
road map with milestones, and a ticket system. We intend to use this system to
manage code development for WAVEWATCH 111, and possibly as the beginning of
a user forum. Trac will be accessible to all those with accounts for our subversion
server, and is presently being set up by the NCEP managers.

17

This page is intentionally left blank.

18

References

Collins-Sussmann, B., B. W. Fitzpatrick and C. M. Pilato, 2004: Version control
with subversion. O'Reilly, 320 pp.!

Tolman, H. L., 1989: The numerical model WAVEWATCH: a third generation
model for the hindcasting of wind waves on tides in shelf seas. Communica-
tions on Hydraulic and Geotechnical Engineering 89-2, Delft Universtity of
Technology, ISSN 0169-6548, 72 pp.

Tolman, H. L., 1990: Wind wave propagation in tidal seas. Communications on
Hydraulic and Geotechnical Engineering 90-1, Delft Universtity of Technology,
ISSN 0169-6548, 135 pp. (Doctoral Thesis).

Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying,
unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21,
782-797.

Tolman, H. L., 1992a: Effects of numerics on the physics in a third-generation
wind-wave model. J. Phys. Oceanogr., 22, 1095-1111.

Tolman, H. L., 1992b: Effects of the Gulf Stream on wind waves in SWADE. in
Proc. 23rd Int. Conf. Coastal Eng., Venice, Italy, pp. 712-725. ASCE.

Tolman, H. L., 1999: User manual and system documentation of WAVEWATCH
I1T version 1.18. Tech. Note 166, NOAA/NWS/NCEP/OMB, 110 pp.

Tolman, H. L., 2002: Testing of WAVEWATCH III version 2.22 in NCEP’s
NWW3 ocean wave model suite. Tech. Note 214, NOAA/NWS/NCEP/OMB,
99 pp.

Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH
[T ™ version 3.14. Tech. Note 276, NOAA/NWS/NCEP/MMAB, 194 pp. +
Appendices.

Van Delst, P., 2008: CRTM: Fortran95 coding guidelines. Technical report, Joint
Center for Satellite Data Assimilation.

! Updated versions available online at http://subversion.tigris.org/.

19

This page is intentionally left blank.

