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1. INTRODUCTION 

 

Ensemble forecast is a probabilistic forecast technique which deals with forecast with 

uncertainty and improves the forecast skills. The National Centers for Environmental 

Prediction (NCEP) has developed and implemented the ensemble global ocean wave forecast 

system (EGOWaFS) operationally (Chen, 2006). The EGOWaFS consists of one control 

member and ten ensemble members using the NWW3 (Tolman at al, 2002 and Tolman, 2003) 

as the wave model to generate the wave data. The model wind input is obtained from 

NOAA/NCEP Global Forecast System (GFS) 10m wind field and is updated every three 

hours. The control forecast is the current operational wave forecast. The ten members are 

generated using the GFS ensemble wind fields made by the breeding method (Toth and 

Kalnay, 1997). The initial wave fields of the ten members of wave forecast are the same as 

that of the control forecast. These ensemble wave forecasts are running four hours per day 

out to 126 hours. The main outputs of the system include the ensemble mean, spread, 

spaghetti diagram and probability at different thresholds every six hours, and are posted on 

NOAA/NCEP website 2 .  

  

 The ensemble forecast theory is resolving two main uncertainties existing in the nonlinear 

numerical forecast objectives: prediction and forecast uncertainties (Toth and Kalnay, 

1997). ). The prediction uncertainty is from the deterministic nonlinear system itself. The 

chaotic system is very sensitive to the initial conditions. Very small perturbation of the initial 

conditions could generate considerable different outputs and lead to big divergence in the 

model forecast over a finite time. These initial errors could easily come from the data 

observation and analysis. The forecast uncertainty is from the predictability of the numerical 

model. Because of our imperfect understanding and knowledge of the natural nonlinear 

systems, the model can not reflect completely all physical processes of the systems. In 

addition there are some errors coming from the numerical methods, dynamical formulation 

and physical parameterizations. Therefore verification of any developed ensemble forecast  
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system is performed to answer to which extent the ensemble system resolves these 

uncertainties (Jolliffe and Stephenson, 2003). After the EGOWaFS was set up, Chen 

(2006) used the significant wave height (H S ) and the wind speed at 10m height (U 10 ) 

from nearly 30 deep water buoys to compare with the ensemble forecast. The spread 

increases with the forecast hour. The ensemble forecast of U 10  and H S  hit all the 

observation data while 

operational forecasts miss many.  Chen also evaluated the system for the storms in May 

through July, 2004. The ensemble system is more realistic than the deterministic system. 

Chen (2006) made the conclusions only studying several cases within three months. More 

ensemble outputs have been generated since then. This study covers the period from June 1, 

2006 to March 31, 2007. H S  and U 10  from the ten ensemble members and the control run are 

used for verification.    

  There are five sections in this paper. Section 1 is the introduction. Section 2 gives a brief 

description of the buoy data used in the study. Section 3 describes the conventional 

verification methods used: Brier skill and Brier skill score, cost-lost analysis and relative 

operating characteristics. Section 4 analyzes the results of each verification skill or score. 

The conclusions are drawn in section 5.           

 

2. BUOY DATA USED FOR VERIFICATION   

 

The wind and wave data from 67 NOAA/NDBC buoys at the same period from June 1 

2006 to March 31 2007 are treated as the ground truth for verification. Fig.1 shows the 

global distribution of the buoys. The hourly and quality controlled buoy data are 

compared with the ensemble output each hour. The wind and wave climate data are 

generated using the NDBC datasets from January 1 1997 to December 31 2006. The 

climate data are hourly averaged at each buoy location without smoothing at larger time 

scale. 

 

3. METHODOLOGY OF VERIFICATION  

     

    3.1 Brier score (BS) and Brier skill score (BSS) 

     BS measures the mean squared probability error. The quadratic scoring measure for a 

probabilistic binary forecast is defined as (Jolliffe and Stephenson, 2003)   
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     where N is the total event number. p iis the forecast probability, o i  is the observed data 

( 1 for the event happening, 0 for the event  not happening). For a probabilistic forecast, 

p i is between 0.0 to 1.0 since ensemble forecasts usually give an uncertain forecast unlike 

the deterministic forecast where the probability is 0 or 1. The best value for a BS is 0 for 

perfect forecast system.       

      Murphy (1973) decomposed the above formula into three terms:  
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      where M is the probability classes. o is the climate data. 

      Reliability measures the difference between the forecast and observed probability 

distribution. The best reliability value is 0. Resolution is the ability to distinguish forecast 

from averaged observed data or climate data. The best resolution value is 0. Uncertainty 

measures the error or variability in the observed data used in either the initial conditions 

or in the comparisons.  Uncertainty is always greater than 0. BS is zero when the forecast 

is a perfect deterministic forecast.   

     The BSS is defines as 

                     BSS=
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     where the reference BS ref  could be the climate data, operational run or different 

forecast system. A positive BSS shows skill in comparison to the reference (BS>BS ref ), 

otherwise there is no skill.  

 

     3.2 Reliability diagram 

     The reliability diagram plots the observed frequency against the forecast probability 

for different probability range. There are 11 ranges in this study (0., 0.1, 0.2, …, 1.0). The 

reliability diagram answers how well the prediction corresponding to its observation. The 

diagonal line indicates perfect reliability. No resolution line indicates the ensemble 

system can not catch the events occurred below that probability (see Fig. 4 and 5). The no 

skill line means no forecast skill if the event occurs below it.            

 

     3.3 Cost-lost analysis  

     3.3.1 Economical value  

     The so-called decision-analytic model (Jolliffe and Stephenson, 2003) (Table 1) 

provides the users to alter their actions based on forecast information and different 

economical purposes.     

 

                        Forecast /Action 

              Yes                                    No 

             Hit(h) 

 Mitigated loss (C+L u ) 

 

        Miss(m) 

 Loss (L=L p + L u ) 

   E 

   v       Yes 

   e 

   n  

   t         No 
         False alarm(f)  

             Cost(C) 

 

 Correct rejection (c) 

        No cost (N) 

                         Table 1. The costs and losses accrued by the use of the wave 

                            prediction, depending on prediction and observed events 

     

    If the event does not occur, and the user takes no action, there is no cost, N=0. If the 

event does not occur, and user takes action, there is a cost  C. If the event occurs, and 

user takes action, there is a cost, C, plus unprotected loss, L u . If the event occurs and 

user takes no action, then there is a loss of L u and protected loss, L p .                     

       The economic value is defined as: 
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       Where E atec lim  is the expected expenses associated with using the climatological data. 

E atec lim = oL u + min(oL p , C). o is the climatological frequency of the event through 

calculating the buoy climate data.  E forecast  is the expected user expense of a forecast 

system. E forecast  = h(C+L u ) + fC+ m(L p + L u ). E perfect  is the minimum expense of a user, 

given a perfect forecast system that provides accurate predictions for the occurrence and 

nonoccurrence of a particular event. E perfect  =o (C+ L u ). 

  

3.3.2 Relative operating characteristics (ROC) 

 ROC measures the ability of the forecast to discriminate between the events and non-

events. ROC curve is plotted using hit rate with false alarm rate against a set of varying 

probability thresholds.  

         Hit rate = hit/(hit +miss) 

         False alarm rate=false / (false + correct rejection).                                      (5) 

 The area under the curve defined as the ROC area is a useful summary measure of a 

forecast skill. ROC area is 1 which means the perfect forecast. Only the ideal 

deterministic forecast can reach it. ROC is 0.5 which means no forecast skill. A good 

ROC indicates by the curve which is close to the upper left corner (low false alarm rate 

and high probability detection) (see Fig. 7). The ROC can be considered as a measure of 

potential usefulness and is a good companion of the reliability diagram.        

     

4. RESULTS 

Below results for the various validation parameters are presented. BBS is calculated 

using five days forecasts, the others are obtained for the day 5 forecast.   

 

4.1 Capacity of the ensemble forecast system and reliability of its forecast 

In Fig. 2, BSS is plotted for the wind and wave field, the reference is the climate field. 

The threshold values are 2m, 4m, 6m and 8m for H S  and 10m/s, 14m/s, 17m/s and 20 

m/s for U 10 . The skill scores are rather good for H S > 2m, 4m and U 10 >10m/s and 14m/s. 

But the system lost predictability after Day 4 for 6m and 8m and with all forecast range 

for U 10 > 17m/s and 20m/s.These results are mainly caused by a lack of sufficient 

observation data. We therefore do not discuss Hs>6m, 8m and U 10 >17m/s, 20m/s in cost-

lost analysis and reliability diagram. Fig. 3 are the BSS plots for wave and wind fields, 

but the reference is the operational NCEP run. All BSS increase over the forecast days. 

This means the ensemble forecast has higher forecast skill than the deterministic 

operational forecast. 

Fig. 4 and 5 are the reliability diagrams for day 5 of wave height (H S > 2m, 4m) and 

wind field (U 10 > 10m/s, 14m/s). The forecast probabilities are divided into 11 ranges 

from 0 to 1.0 increasing by 0.1.  The observed relative frequency is defined the fraction 

of the observed events against the total number of the forecast events in the same 

probability class. The striking results from the diagrams are the “no resolution” lines 
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which are very low, less than 0.1 for wave height and 0.02 for wind fields. These show 

that this ensemble wave forecast system has very high forecast capacity. It could catch 

nearly all events occurred. In the low probability, the forecast system is under-forecast. In 

the high probability, the forecast system is over-forecast. The probability 0.9 and 1 for 

U 10 >14m/s are obvious abnormal caused by less observation data.      

  4.2 Cost-loss analysis of the ensemble forecast system 

   Fig. 6 is the relative economic value as a function of the cost-loss ratio of the ensemble 

wave forecast and the operational NWW3 forecast. The benefit of the ensemble forecast 

system is apparent in these four cases. The economic value of the ensemble system is 

larger than that of operational run at each ratio. The economic value 0 means the value 

calculated using the climatology data and 1 means the value using the perfect forecast 

system. The economic value could be obtained from a larger range of cost-loss ratio 

using the ensemble forecast than using the operational forecast.    

   Analyzing the relative operating characteristics (ROC) for different thresholds could be 

used to perceive the performance of ensemble forecast system (Fig. 7). ROC areas are 

over 0.85 for H S >2m and U 10 >10m/s and 0.98 for H S >4m and U10>14m/s.      

 

5. DISCUSSION AND CONCLUSION  

     

   The ensemble forecast system has better forecast skill than the deterministic operational 

forecast after the probabilistic improvement. The EGOWaFS system has good forecast 

capacity which could catch most forecasted events. The ensemble system is under 

forecasting in low probability and over forecasting in high probability (Fig. 4). The 

sharpness diagram (histogram) in this figure clearly identifies that the spread generated 

by the ensemble is too narrow. Furthermore higher wind speeds are biased high, and, not 

surprisingly, so are higher wave heights. This behavior is well known from deterministic 

validation of the control run; see for instance, Bidlot et al. (2007), where wind speed and 

wave height biases are known to drift upward with forecast time. At the five day forecast, 

all such biases are generally positive. Note that the underestimation of the spread in wave 

heights in EGOWaFS is not unique to this ensemble system. It is also observed in the 

ECMWF ensemble forecast system (see Saetra and Bidlot, 2004).  A possible explanation 

for the narrowness of the spread can be found in the design of the ensemble. By 

perturbing the forcing only, only wind sea perturbations are generated. Swells older than 

five days are essentially identical in all members of the ensemble. This is caused by the 

use of identical initial conditions in all ensemble members. Swells therefore do not 

contribute to the spread in the ensemble, whereas there clearly is uncertainty in the swells 

at the time of their origination. Swell contributions to the ensemble spread are therefore 

by definition underestimated.  To assess if this can explain the spurious narrowness of the 

ensemble wave height distribution, we intend to isolate wind seas in the ensemble and in 

the data, and perform the same validation based on wind seas only. 

  An additional problem with the validation study presented here is the general lack of 

data. First, the 10 month period considered here is too short to provide a sufficient sample 

size of extreme wave conditions. Second, buoys used in this verification are located in the 

Northern Hemisphere, they can not represent the Southern part. Alternatively, altimeter 

data for several years should be used in the validation. We intend to use the altimeter data 

for such a validation study in the near future. 
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               FIG. 1. Global buoy locations used in the ensemble wave forecast verification 

 

 

 

 

 

 
             FIG. 2. Brier Skill Scores using the wave and wind climate data as the reference  
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             FIG. 3.  Brier Skill Scores using the NWW3 operational run as the reference  

 

 

  

 

 

         
   

          FIG. 4.  Day 5 reliability diagram for wave height. Left: H S > 2m, Right: H S >4m.    
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                     FIG. 5. Day 5 reliability diagram for wind field. Left: U 10 >10m/s, Right: U 10 :14m/s. 
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            FIG. 6 Day 5 economic value for wave (H S  >2m and H S  >4m) and wind (U10 >10m/s and U10 >14m/s) 

 

 

                               
  

                      FIG. 7 Day 5 relative operating characteristics (ROC) curve for wave (H S >2m and H S >4m) 

                                                      and wind (U10> m/s and U10 > 14m/s) 


