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Abstract

Development of neural network (NN) emulations for fast calculations of physical processes in numerical climate and weather prediction
models depends significantly on our ability to generate a representative training set. Owing to the high dimensionality of the NN input vector
which is of the order of several hundreds or more, it is rather difficult to cover the entire domain, especially its “far corners” associated with
rare events, even when we use model simulated data for the NN training. Moreover the domain may evolve (e.g., due to climate change). In this
situation the emulating NN may be forced to extrapolate beyond its generalization ability and may lead to larger errors in NN outputs. A new
technique, a compound parameterization, has been developed to address this problem and to make the NN emulation approach more suitable for
long-term climate prediction and climate change projections and other numerical modeling applications. Two different designs of the compound
parameterization are presented and discussed.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper describes an interdisciplinary study. This study
follows upon our previous works presented in the previous
papers of the authors (e.g., Krasnopolsky, Chalikov, and Tolman
(2002) and Krasnopolsky, Fox-Rabinovitz, and Chalikov
(2005)). In these works we developed a new approach,
introducing nonlinear statistical learning techniques (NNs)
into tremendously complex and time consuming numerical
models, describing one of the most complex, multidimensional,
I MMAB Contribution No. 258.
II An abbreviated version of some portions of this article appeared in
Krasnopolsky, Fox-Rabinovitz, and Belochitski (2007) as part of the IJCNN
2007 Conference Proceedings, published under IEE copyright.
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and essentially nonlinear systems (climate/weather system)
known to the modern science. This new approach introduces
fast and accurate NN emulations of time consuming original
model components into numerical climate/weather models.
As a result, the model computational performance improves
significantly without a detriment to the quality of model
predictions. This applied research (and the current study) has
a clearly formulated practical goal: to improve computational
performance of operational weather prediction and climate
simulation models by using accurate, fast, and robust
NN emulations substituting the time consuming original
components of the models.

1.1. Climate models and model physics

One of the main problems of development and implemen-
tation of high-quality high-resolution environmental models is
the complexity of physical (chemical and biological) processes
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involved. For example, for the state-of-the-art climate model,
the National Center for Atmospheric Research (NCAR) Com-
munity Atmospheric Model (CAM) (see the special issue on
the National Center for Atmospheric Research Community Cli-
mate Model in the Journal of Climate, 11 (6) 1998, for the
description of the model), calculation of a model physics pack-
age takes about 70% of the total model computations. For this
and other numerical models neural network (NN) techniques
have been developed (Krasnopolsky et al., 2002, 2005; Tol-
man, Krasnopolsky, & Chalikov, 2005; Krasnopolsky & Fox-
Rabinovitz, 2006; Krasnopolsky, 2007) for speeding up the cal-
culations of model physics (i.e., deterministic or first principle
components of atmospheric and oceanic numerical models de-
scribing physical processes) up to two to five orders of magni-
tude. The speed-up is achieved through the development of NN
emulations of model physics.

Tremendous complexity, multidimensionality, and nonlin-
earity of the climate/weather system and numerical models
describing this system lead to complexity and multidimension-
ality of our NN emulations and data sets that are used for their
development and validation. Also, the validation procedure for
developed NN emulations becomes more complicated because,
after their development, they are supposed to work in a complex
and essentially nonlinear numerical model. The development of
NN emulations of model physics depends significantly on our
ability to generate a representative training set to avoid using
NNs for extrapolation beyond the domain covered by the train-
ing set. Owing to the high dimensionality of the input domain
(i.e., dimensionality of the NN input vector) which is of the or-
der of several hundreds or more, it is difficult if not impossible
to cover the entire domain, especially its “far corners” associ-
ated with rare or extreme events, even when we use model sim-
ulated data for the NN training. Also, the domain may change
with time as in the case of climate change. In such situations the
emulating NN may be forced to extrapolate beyond its gener-
alization ability which may lead to larger errors in NN outputs
and, as a result, to errors in the numerical models in which they
are used.

1.2. NN emulations of model physics

We have developed NN emulations of major components
of climate model physics (Krasnopolsky et al., 2005;
Krasnopolsky & Fox-Rabinovitz, 2006; Krasnopolsky, 2007)
for the widely recognized and used NCAR CAM. Specifically,
we developed the NN emulations of the NCAR CAM long
wave radiation (LWR) and short wave radiation (SWR)
parameterizations which are the most time consuming
components of model physics describing the propagation of
electromagnetic radiation in the Earth’s atmosphere. Both
original (i.e. used in the current version of NCAR CAM)
LWR and SWR parameterizations are physically based
process models. They may be considered mathematically as a
continuous or almost continuous mapping between two vectors
X (input vector) and Y (output vector) and symbolically can be
written as:

Y = M(X); X ∈ Rn, Y ∈ Rm (1)
where M denotes the mapping, n is the dimensionality of
the input space (the number of NN inputs), and m is the
dimensionality of the output space (the number of NN outputs).
The simplest multi-layer perceptron (MLP) NN with one
hidden layer and linear neurons in the output layer can be
used as a generic analytical nonlinear approximation or model
for the mapping (1) (Funahashi, 1989; Hornik, 1991). In our
application, the possibility to use the simplest MLP NN is
very important because the complexity and high dimensionality
of the problem impose significant limitations on the arsenal
of NN techniques and statistical metrics that can be used
in our study. Also, the choice of statistical metrics used is
determined and conditioned by those used for estimating errors
and performances in the climate/weather modeling; this is a
consequence of the interdisciplinary nature of the study.

The developed NN emulations for LWR and SWR are
highly accurate and much more computationally efficient than
the original NCAR CAM LWR and SWR, respectively. For
example, the NN emulations using 50 neurons (NN50) for
the LWR NN emulation and 55 neurons (NN55) for the
SWR NN emulation in the single hidden layer provide, if run
separately (code by code comparison) at every model physics
time step (1 hour), the speed-up of ∼150 times for LWR and
of ∼20 times for SWR as compared with the original LWR
and SWR, respectively. These NNs have each more than 200
inputs and about 50 outputs (as many as the original LWR and
SWR parameterizations which they emulate and substitute).
The number of NN weights (or dimensionality of the NN
training space) for these NNs reaches 10,000–20,000. The
dimensionality is higher for NNs with a larger hidden layer
and/or for models with higher vertical resolution (Krasnopolsky
et al., 2005; Krasnopolsky, 2007).

All details of creating the training, validation, and test
sets and of selecting the NN architecture are discussed in
Krasnopolsky (2007). Here we only mention that each of
these independent data sets consist of more than 100,000
records. Each record is a combination of an input vector X
with more than 200 components and an output vector Y with
about 50 components. Problems associated with normalizing
multiple outputs of different nature and with choosing an error
metric and a training algorithm, when dealing with such high-
dimensional mappings and long training sets, are discussed in
details in our earlier paper (Krasnopolsky & Fox-Rabinovitz,
2006).

The results of long multi-decadal climate simulations
performed with NN emulations for both LWR and SWR,
i.e., for the full model radiation, have been validated against
the parallel control NCAR CAM simulation using the original
LWR and SWR. Almost identical results have been obtained for
these parallel 50-year climate simulations (Krasnopolsky, Fox-
Rabinovitz, & Belochitski, 2007).

In another numerical model, an ocean wind wave model
which is used for the simulation and forecast of ocean waves,
the nonlinear wave–wave interaction represents a significant
computational “bottleneck”. An accurate calculation of this
component requires roughly 103–104 times more computa-
tional effort than all other aspects of the wave model combined.
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For over 40 years researchers have been trying to get econom-
ical approximations for the nonlinear four-wave interactions.
The only feasible result so far has been the direct interaction
approximation (DIA) parameterization, which dates back more
than 20 years. This simple parameterization with computational
efforts comparable to all other aspects of a wave model com-
bined makes wave modeling economically feasible, but also
limits the potential of further model development. All other
mapping approaches that were developed before have failed in
the sense that none of these methods resulted in a stable model
integration. It is therefore a significant achievement that the
method presented here does provide stable model integration.
As the (exact or approximate) nonlinear wave–wave interaction
can be considered as a continuous mapping (1), we applied a
NN technique and developed a NN emulation of the exact non-
linear interactions. The NN emulation is about five orders of
magnitude faster than the exact interactions, and hence compa-
rable in costs to the simple DIA parameterization (Krasnopol-
sky et al., 2002; Tolman et al., 2005). Unlike the simple DIA
parameterization, the NN approximation retains major details
of the exact interactions. This NN emulation was further val-
idated through integration for a limited period in the National
Centers for Environment Prediction (NCEP) operational wave
model (WAVEWATCH III).

1.3. Accuracy and quality control of NN emulations

The accuracy of NN emulations of model physics depends
significantly on our ability to generate a representative training
set to avoid using NNs for extrapolation beyond the domain
covered by the training set. Owing to the high dimensionality
of the input domain (i.e., dimensionality of the NN input vector
X ) which is of the order of several hundreds or more, it is
difficult if not impossible to cover the entire domain, which may
have a very complex shape, even when we use model simulated
data for the NN training. Also, the domain may change with
the evolution of the system during a simulation period. In
such situations the emulating NN may be forced to extrapolate
beyond its generalization ability which may lead to larger errors
in NN outputs and correspondingly in the numerical model
simulations in which NN emulations are used.

The developed NN emulations are very accurate. Larger
errors and outliers (a few extreme errors) in NN emulation
outputs occur only when NN emulations are exposed to inputs
not represented sufficiently in the training set. These errors
have a very low probability (see Fig. 3) and are distributed
randomly in space and time. However, when long multi-decadal
climate simulations are performed and NN emulations are used
in a very complex and essentially nonlinear climate model for
such a long integration time, the probability for occurrence of
larger errors and the probability of their undesirable impact
on the model simulations increase. As we learned from our
experiments with NCAR CAM, the model was in many but not
in all cases (shown, for example, in Fig. 7 of Section 2) robust
enough to overcome such randomly distributed errors without
their accumulation in time. However, for these few cases, it is
still essential to develop and use for NN emulations an internal
quality control (QC) procedure capable of controlling their
larger errors.

In another application of a NN approximation to nonlinear
interactions in a wave model, the model did not prove
sufficiently robust to retain stability for time integrations of
even a few hours. Thus, in this model, introducing an internal
QC method for identifying and controlling larger NN emulation
errors is especially essential for the successful application of
NN emulation of the model physics (Tolman & Krasnopolsky,
2004).

Therefore, it is essential to introduce a QC procedure,
which can predict and eliminate larger errors of NN emulations
during the integration of highly nonlinear numerical models,
not just relying upon the robustness of the model that can vary
significantly for different models. Such a mechanism would
make our NN emulation approach more reliable, robust, and
generic.

In this paper, we introduce a compound parameterization
(CP) which combines NN emulation with a QC technique. We
present two different designs of CP both based on the use
of NN techniques. We also discuss the possibility of using
CP as a tool for introducing a dynamical adjustment of NN
emulations to climate change. In Section 2 we introduce the CP
approach and discuss its application and versions as well as its
validation on an independent data set and through NCAR CAM
and WAVEWATHC III simulations. Conclusions and discussion
are presented in Section 3.

2. The compound parameterization approach for reducing
the amount of larger errors in NN emulations

2.1. Two-step validation procedure for NN emulations and CP

The final goal of our developments is a stable functioning of
the NN emulation in the complex nonlinear numerical model
for a sufficiently long time and the similarity of the model re-
sults produced with the original component (the control run)
and with the NN emulation of this component. For such a situa-
tion, the high accuracy of a NN emulation obtained on an inde-
pendent test set does not guarantee its stable performance in a
numerical model. Thus, in our case, a reasonably good accuracy
of NN emulation on a test set is a necessary but not sufficient
condition for the satisfactory validation of NN emulation. This
is only the first step of the two-step validation procedure used
for the validation of the developed NN emulations in our previ-
ous studies (e.g. Krasnopolsky et al. (2005) and Krasnopolsky
and Fox-Rabinovitz (2006)), and also used for validation of CPs
developed in this study. The second and the most important step
of the validation procedure is the validation of the model run
with NN emulation vs. the control run with the original param-
eterization. During this second validation step, the run with the
NN emulation (or with CP) should demonstrate, in addition to
its stable performance, a close similarity of all simulated results
to those of the control run.

2.2. CP designs and their validation on independent data sets

CP consists of the following three components: the original
parameterization, its NN emulation, and a quality control (QC)
block (see Figs. 1 and 4). During a routine numerical model
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Fig. 1. Compound parameterization design for the NCAR CAM SWR. For
each SWR NN emulation (NN55, in this case), additional NNs (Error NN)
is trained specifically for predicting, for a particular input, X , the errors, Yε ,
in the NN emulation output YN N . If these errors do not exceed a predefined
threshold (in this case, the mean value plus two standard deviations), the SWR
NN emulation (NN55) is used; otherwise, the original SWR parameterization
is used instead of the NN emulation. ATS stands for the auxiliary training set
that is updated each time when QC requires using the original parameterization
instead of NN emulation. ATS is used for the follow-up dynamical adjustment
of the NN emulation.

simulation with CP, the QC block determines (based on some
criteria presented below, at each time step of model integration
and at each grid point) whether either the NN emulation
or the original parameterization has to be used to generate
physical parameters (i.e. parameterization outputs). Namely,
when the NN emulation errors are large (i.e., they exceed an
error threshold) for a particular grid point and time step, the
original parameterization is used instead of NN emulation.
When the original parameterization is used instead of the NN
emulation, its inputs and outputs are saved to further adjust
the NN emulation. Although it goes beyond the scope of
this study, it is worth mentioning that after accumulating a
sufficient number of these records, an adjustment of the NN
emulation can be produced by a short retraining using the
accumulated input/output records. Thus, CP can be used for
the development of NN emulations that become dynamically
adjusted to the changes and/or new events/states produced by a
complex environmental or climate system.

There are different possible QC designs considered for CP.
The first and simplest QC design is based on a set of regular
physical and statistical tests similar to those used for QC of
meteorological observations (e.g., Dee, Rukhovets, Todling, da
Silva, and Larson (2001) and Gandin (1988)). Such approaches
can be used to check the consistency of NN outputs. These
are the simplest, most generic but not sufficiently flexible
approaches. Statistical tests that are usually based on linear
statistical correlations between inputs and/or outputs and errors
in outputs, work not so well for larger and extreme errors which
are usually caused by nonlinear correlations (e.g., see Fig. 2).
Statistical criteria are usually global and based on past data.
They may not be sensitive enough to local perturbations and
also to new situations emerging in the course of integration of a
complex environmental or climate system due to the change of
Fig. 2. The correlation (binned scatter plot, the error bar shows the standard
deviation inside the bin) between the actual error (prmse of the NN emulation
NN55) and the error predicted by the error NN calculated vs. the original
parameterization on an independent test data set. The correlation coefficient
between the two errors is 0.87.

its simulated environment, such as an evolving climate change.
When applied to NN emulation outputs, such criteria give
a significant amount of false alarms. In the context of our
complex system application, which includes also a trade-off
between the accuracy of an NN emulation and its computational
performance, such a significant amount of false alarms leads to
a significant reduction in the computational performance of CP.
Namely, each false alarm leads to a rejection of an accurate (but
falsely suspected) and fast NN emulation and to its unnecessary
replacement by the time consuming original parameterization.
Owing to these significant problems important for our CP
application, the above simple statistical QC design was not used
in this study.

The second and more sophisticated, nonlinear, and effective
QC design is based on training an additional NN to specifically
predict the errors of the NN emulation outputs for a particular
input (Krasnopolsky & Fox-Rabinovitz, 2006). The error NN
has the same inputs as the NN emulation and one or several
outputs — errors of outputs generated by the emulation NN
for these inputs. In this work, we used an error metric that
produces one error for all outputs Eq. (2); thus our error NN
has one output. During the model integration, if this error
does not exceed a predefined threshold, the NN emulation is
used; otherwise, the original parameterization is used instead.
An example of application of this CP design (see Fig. 1) is
presented below for the NCAR CAM SWR.

For the SWR NN emulation (using the NN with one hidden
layer that contains 55 neurons and a linear output layer — SWR
NN55) an error NN was trained which estimated a NN55 output
error prmse(i) (2) for each particular input vector X i ,

prmse(i) =

√√√√ 1
L

L∑
j=1

[Y (i, j) − YN N (i, j)]2 (2)
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Fig. 3. Probability density distributions of emulation errors for the SWR NN
emulation NN55 (solid line) and for the compound SWR parameterization
shown in Fig. 1. The vertical axis is logarithmic and shows the error probability;
the horizontal axis shows the NN emulation errors in K/Day. In both cases
errors are calculated vs. the original SWR parameterization. The CP reduces
the probability of medium and large errors by an order of magnitude.

where Y (i, j) and YN N (i, j) are outputs from the original
parameterization and its NN emulation, respectively, where
i = (latitude, longitude), i = 1, . . . , N is the horizontal
location of a vertical profile; N is the number of horizontal
grid points; and j = 1, . . . , L is the vertical index, and L
is the number of the vertical model levels. The mean value
of prmse, µ =

1
N

∑N
i=1 prmse(i), and its standard deviation,

σ =

√∑N
i=1[prmse(i)−µ]2

N−1 are used in the QC block for

calculating the threshold value.
Fig. 2 shows the results of the calculations performed with

the data set containing more than 100,000 records, each of
which consists of the error predicted by the error NN and the
actual error of the NN emulation. The actual errors of the NN
emulation were binned and for each bin a corresponding mean
errors predicted by the error NN and its standard deviations
were calculated and plotted as a curve with error bars. The
plot with only six bins is presented in Fig. 2 for simplicity
and convenience of presentation. Increasing the number of bins
does not change the dependence significantly. Fig. 2 shows
a very strong correlation between the error predicted by the
error NN and the actual error of the NN emulation (SWR
NN55) calculated vs. the SWR original parameterization on
an independent test data set. The dependence, linear for small
errors, becomes nonlinear for larger errors. The high, 0.87,
correlation coefficient is obtained between these two errors
calculated on the entire 100,000 records long test set.

Fig. 3 shows the comparison of two error probability density
functions. One curve (solid line) corresponds to the NN55
emulation errors, another (dashed line) corresponds to the CP
Table 1
Error Statistics for SWR NN Emulation NN55 and SWR Compound
Parameterization: Bias and total RMSE, RMSE26 at the lower model level, and
Extreme Outliers (Min Error & Max Error)

Bias RMSE RMSE26 Min error Max error

SWR NN55 4 × 10−3 0.19 0.43 −46.1 13.6
SWR CP 4 × 10−3 0.17 0.30 −9.2 9.5

These statistics have been calculated on independent one-year long test set.
Errors for HRs are in K/day.

emulation errors shown in Fig. 1 (both errors are calculated
vs. the original parameterization on the independent test set;
the vertical axis is logarithmic). Fig. 3 demonstrates the
effectiveness of CP; the application of CP reduces medium and
large errors by about an order of magnitude. This is presented
by the differences between the solid and dashed lines for NN
emulation errors exceeding ∼5–10 or more K/day.

Fig. 4 demonstrates the effectiveness of CP in removing
outliers, and Table 1 shows improvements in other statistical
measures. The use of CP: (a) does not increase the systematic
error (bias) which is almost zero; and (b) significantly reduces
the random error. Especially significant is the reduction of
extreme errors or outliers. It is noteworthy that for this CP
and for this validation data set, less than 1% of the SWR
NN55 emulation outputs are rejected by QC and calculated
using the original SWR parameterization. Further refinement
of the criteria used in the QC may result in a further significant
reduction in the already small percentage of outliers as it will
be shown below in Section 2.3.1

The third QC design is based on the domain check technique
proposed in the context of NN applications to satellite remote
sensing (Krasnopolsky & Schiller, 2003). The domain check
consists of checking the forward mapping (1) using an inverse
mapping, m,

X = m(Y ); Y ∈ Rm, X ∈ Rn (3)

Thus, by definition of the inverse mapping, X = m(M(X)).
In this case, QC is based on a combination of a forward NN
emulation (a NN emulation of the mapping M) and an inverse
NN (iNN) with a mirror symmetric architecture (inputs and
outputs are transposed) that emulates the mapping m. The
QC checks the difference between the vector X and X ′

=

iNN(NN(X)). The difference should be small if X is inside
of or close to the domain covered by the training set. If the
difference is more than a predefined threshold the original
parameterization is used instead of the NN emulation.

This third QC design has already been successfully applied,
as a preliminary study, to the nonlinear wave–wave interaction
in an ocean wave model (Tolman & Krasnopolsky, 2004).
A NN algorithm (NNIA) described in Krasnopolsky et al.
(2002) and Tolman et al. (2005) was developed to emulate
the nonlinear wave–wave interaction in ocean wind wave
models. In this algorithm, the input (a two-dimensional Fourier
spectrum of the ocean surface waves, F( f, θ)) and output (a
two-dimensional nonlinear wave–wave interaction, Snl( f, θ)),
are decomposed (expended into series) using two-dimensional
empirical orthogonal functions (EOF). Then the NN is trained
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Fig. 4. Scatter plot for HRs (heating rates) calculated using the SWR NN emulation NN55 (the left panel) vs. the original SWR parameterization (left and right
horizontal axes) and for HRs calculated using the SWR compound parameterization (the right panel) vs. the original SWR parameterization. Gray crosses (the left
panel) show outliers that are eliminated by the compound parameterization (the right panel).
Fig. 5. Compound parameterization design for the NNIA algorithms described
in the text. Due to the use of the EOF decomposition and composition
procedures the inverse NN (iNN) and QC block is implemented for composition
coefficients X and X ′. ATS denotes the auxiliary training set that is updated
each time when QC requires using the original parameterization and is used for
the follow-up dynamical adjustment of the NN emulation.

to map the decomposition coefficients of the input, X , onto the
decomposition coefficients of the output, Y . The inverse NN
maps vector Y onto vector X ′. The difference between X and
X ′ that supposed to be small is used as the QC criterion in this
case. Fig. 5 illustrates this CP design.

Fig. 6 shows a very strong correlation (asterisks) between
the errors (relative errors in %) of the inverse NN (iNN) and of
the NN emulation calculated vs. the original parameterization
on an independent test data set. It means that this QC
design provides an effective tool for identification of larger
NN emulation errors. There are only few errors exceeding
10%–12%. Also, the maximum errors (triangles) show a high
degree of correlation with the iNN errors, which makes this
design an effective tool for removing extreme outliers as well.
2.3. Validation of CP in NCAR CAM and WAVEWATCH III

2.3.1. CAM
The second CP design outlined above has been implemented

into NCAR CAM using the SWR NN55 emulation. A number
of 50-year model simulations have been performed with the QC
procedure using different thresholds. An appropriate threshold
of 0.5 K/day has been determined experimentally. In this
context, choosing an appropriate threshold means that the
selected threshold (which is approximately equal to µ + 2σ )
does not allow for even limited accumulation of errors (see the
light gray line in Fig. 7) during the CAM simulation and, at
the same time, does not practically reduce the computational
speed-up gained by using the fast NN emulation. Thus, at
each integration time step and at each grid point of the model
with CP, the error NN, that predicts the error of the NN
emulation, was estimated, and if the predicted error did not
exceed 0.5 K/day, the NN emulation outputs were calculated
and used in the model; otherwise the original parameterization
was calculated and its outputs were used in the model.

The example shown in Fig. 7 illustrates the effectiveness of
CP in eliminating any accumulation of errors in the course of
the model integration. When the model is integrated without
QC, the SWR NN emulation NN55 produces moderately
increased errors (errors increase from ∼0.07 K/day to
∼0.14 K/day) during the period between 24th and 25th years of
the integration (the gray curve in Fig. 7). The error NN predicts
this increase of the errors very well (the black curve in Fig. 7).
After the QC was turned on, that is the model was integrated
with the CP, the level of errors dropped significantly in general
and, what is even more important, the bump between 24th
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Fig. 6. Correlation (binned scatter plot) between the errors (relative errors in
%) of the inverse NN (iNN) and of the NN emulation calculated vs. the original
parameterization on an independent test data set. Asterisks show correlation
between mean errors, triangles — between maximum errors in the bin. Solid
line shows the number of data points in the bin divided by 10.

and 25th years disappeared completely (the light gray curve
in Fig. 7).

Using CP provides a stable and reduced error environment
for model simulations compared to the model simulations
performed without QC. It is noteworthy that, at each time
step, the NN emulation outputs were rejected by the QC and
the original parameterization was used instead mostly only
for 0.05%–0.1% but below 0.4%–0.6% of model grid points,
throughout the entire 50-year model simulation. Therefore, the
computational performance of the model with NN emulation
was practically not reduced and CP is still about 20 times faster
than the original SWR parameterization.

2.3.2. WAVEWATCH III
An experimental CP for the nonlinear wave–wave interac-

tion in the WAVEWATCH III ocean wind wave model as illus-
trated in Fig. 5 uses the domain check approach with an inverse
NN (iNN in the figure). The most critical test for any approxi-
mation to the nonlinear interactions is the capability of a model
using the approximation to produce wave growth under strongly
forced conditions (high winds). In such conditions, large-scale
features (in spectral space and in time) of the nonlinear interac-
tions are essential to allow waves to grow simultaneously higher
and longer, whereas small-scale features are essential to (lo-
cally) stabilize the shape of the spectrum. The CP is therefore
trained with and applied to a simple case of wind wave growth,
assuming spatially homogeneous conditions. For the training
we used a limited training set consisting of about 5000 of pairs
of input spectra and output exact nonlinear interactions. This
training set samples a limited sub-domain in the entire input
space (space of all possible spectra).

Fig. 8 shows the results of integration of CP in the
WAVEWATCH III ocean wind wave model. Panel (f) shows the
results of the model with the full (exact) parameterization of the
nonlinear interactions, consisting of a six-dimensional Bolzman
integral over the spectrum. Contours represent energy levels in
the polar representation of spectral space, with a logarithmic
Fig. 7. Errors (vs. the original SWR parameterization) produced by the SWR
NN emulation during the model run (gray line), errors predicted by the error
NN (black line), and errors produced after introducing CP instead of the SWR
NN emulation (light gray line).

spacing of contour intervals at intervals of a factor of 2. The
consistent and axisymmetric shape of the spectrum is typical
for gravity waves actively forced by winds (so-called wind
seas). For this expensive nonlinear interaction description, an
accurate NN interaction approximation (NNIA) was developed
by Tolman et al. (2005) using a limited data set described
above. If however, this approximation is applied in a full wave
model, errors in the NNIA accumulate, and the wave spectrum
becomes unrepresentative for the training data set used for the
development of the NNIA. Subsequently, the balance between
source terms becomes unrealistic. The waves do not grow, and
the spectral shape does not resemble the proper solution. The
results for this case are presented in Fig. 8a. Subsequently,
when the CP presented in Fig. 5 has been developed and
implemented, integration is sufficiently stabilized to allow for a
realistic wave growth (Fig. 8b, compare wave heights in upper
right corners of the panels). Subsequent to the reduction of
allowed errors in the QC part of the CP (a more restrictive QC),
the accuracy of the model clearly increases (Fig. 8c–e).

The approach to describe the nonlinear wave–wave
interactions most effectively in terms of computational
efficiency and accuracy may well require a more complex CP
than the CP approaches that have been discussed so far. The
initial data decompositions using EOFs as shown in Fig. 5
introduces a truncation error in the corresponding description
of the wave spectrum. By definition, such truncations tend to
filter out small-scale fluctuations, which in many processes can
be considered as noise. For the wave growth process, however,
these scales are essential to stabilize the spectral shape during
model integration. It remains to be seen if this part of the
solution can ever be described effectively by a NN approach.
Fig. 8 shows that a simple CP can circumvent this issue.
However, the small-scale processes in the nonlinear interactions
could be modeled explicitly as a local diffusion process, the
computational effort of which is orders of magnitude less
than direct computation of nonlinear interactions at all spectral
scales, because the later involves a six-dimensional integration



542 V.M. Krasnopolsky et al. / Neural Networks 21 (2008) 535–543
Fig. 8. Wave-energy spectrum after 24h of wave growth in WAVEWATCH III. (a) NN approximation to nonlinear interactions, (b-e) Results obtained with
increasingly strict QC in the CP approach. (f) Results with a full nonlinear interaction parameterization. Corresponding wave heights in meters are shown in
the upper right corner of each panel and the allowed error in QC in the upper left panel.
over the entire spectral space. Tentatively, a more complex CP
approach for nonlinear wave–wave interactions could therefore
be based on a NN approach for larger spectral scales and a local
diffusion to describe small scale (to be trained simultaneously),
combined with an explicit QC part to add robustness.

3. Conclusions and discussion

A new improved NN emulation approach called a compound
parameterization, which incorporates NN-based quality control
techniques for controlling larger errors of NN emulations, has
been developed. One design of a compound parameterization
presented in the paper uses a special NN trained to predict
errors in outputs of NN emulation of a climate model physics
component. It is shown that the accurate representation of a
model physics component using a compound parameterization
with a quality control of larger errors is essential for successful
climate simulations.

Another design of a compound parameterization uses an
inverse NN to check the quality of the NN emulation. This
design was used in the framework of a wind-wave model
where the use of a compound parameterization is essential for
a stable integration of the model that uses a NN emulation of
the nonlinear wave–wave interaction. Introducing a compound
parameterization for the ocean wave model allowed us to
predict and efficiently control rarely and randomly occurring
larger errors including extreme errors/outliers of the NN
emulations not relying exclusively on the robustness of the
model resulting in filtering them out. It should be noticed
that the CP has not been developed yet to full maturity. For
application to arbitrary wave conditions, complex sea states
with multiple independent wave systems need to be considered.
Even when only wind seas are considered, the CP needs to be
developed further by iterative training (dynamical adjustment)
as described above in Section 2.2.

The CP approach can be considered as an engineering
solution that does not investigate the problem (why on some
rare occasions a NN emulation does not perform well) but
bypasses it allowing to use this NN emulation safely in the
essentially nonlinear and complex environment of a numerical
model. If a second error NN can be trained to reliably predict
errors of the NN emulation, then it looks like these errors can
be investigated, explained, and eliminated by correction of the
NN emulation itself. Theoretically speaking, this is correct.
However, practically speaking, it is hardly possible. As we have
mentioned before, the main reason for such larger errors to
occur is our inability to generate a completely representative
training set, that is to get represented each far corner of the
domain of the mapping (1). For modern climate and weather
models this domain has dimensionality of the order of 103

and higher. A systematic investigation of such an object is a
formidable task that requires significant special efforts. Using
CP allows us to flag and to bypass these questionable far corners
of the domain leaving their investigation for the future research.

There is also another important aspect of this problem: some
larger NN emulation errors are ignored by the numerical model
where this NN emulation is introduced; whereas some other
larger NN emulation errors cause a significant reaction of the
model like the one presented in Fig. 7 (actually the bump be-
tween 24th and 25th years). Currently, we can only speculate
why such larger differences between the NN emulation and the
original parameterization happen and why the reaction of the
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model is so different. It is worth noting that the original pa-
rameterization is an approximate physical model that itself may
have discontinuities and inconsistencies. Actually, some of the
larger NN emulation errors can be caused by such inconsisten-
cies and discontinuities; in these cases the NN emulation “er-
rors” may lead to smoother physics and a better performance of
the model. Further investigation of these problems is very im-
portant and illuminating; it can also provide a valuable feedback
to developers of model physics parameterizations; however, it
goes far beyond the scope of this paper.

Development of the compound parameterization approach
is also a major step toward creating NN emulations capable
of an automatic dynamical adjustment to changes occurring
in the course of numerical model simulations. When the
NN emulation results are rejected by QC and the original
parameterization is applied, the inputs and outputs of the
original parameterization could be saved in an auxiliary training
set. After accumulating a sufficient number of these records, an
adjustment of the NN emulation can be produced by a short
retraining using the accumulated auxiliary training set. This
procedure can easily be implemented automatically. Although
it goes beyond the scope of this study, it is worth mentioning
that CP can be used for the development of NN emulations
that become automatically dynamically adjusted to the changes
and/or new events/states produced by a complex environmental
or climate system.

It is also worth noting that the complexity and high
dimensionality of the mapping (1) that we emulate using MLP
NN and a large size of the training set that is required to
satisfactorily represent such a high-dimensional object, impose
significant limitations on the arsenal of NN techniques and
statistical metrics that can be used in our study. For a NN
training, we use a simplest error metric — the squared-error
loss. This function is obviously not the best one because the
error distribution is obviously not normal (see Fig. 3). We
would like to use a more appropriate loss function. However,
using the squared-error loss metric allowed us to use a simple
version of a back propagation training algorithm which is the
only algorithm that works with such high-dimensional NNs (the
dimensionality of the NN training space reaches 105–106 in our
case) and with such long and high-dimensional training sets
needed for this application.
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