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1 INTRODUCTION

Ocean wave modeling has been in the center of inter-
est for several decades. Following Hasselmann (1960)
numerical models are generally based on an action
or energy balance equation of the form

DF
E - Stot - Szn + Snl + Sds ) (1)

where F' is the spectrum and S;, represents the
sources and sinks, consisting of a wind input (S;,),
nonlinear interactions (Sy;) and dissipation (Sgs)
source terms. Arguably the biggest breakthrough
in the understanding of wind wave generation, and
hence in numerical wave modeling, occurred with the
understanding of the critical role of the nonlinear
interactions source term S;,; in the process of wave
growth (Phillips, 1960; Hasselmann, 1962, 1963a,b;
Hasselmann et al., 1973). The nonlinear interactions
are believed to provide the lowest order mechanism
to shift wave energy to longer waves, and also pro-
vide a stabilization mechanism for the shape of the
spectrum. Reviews of the interactions and their im-
pact can be found, for instance, in Masuda (1980),
Phillips (1981), Young and Van Vledder (1993) or
Komen et al. (1994).

The exact computation of the nonlinear interac-
tions S,,; involves the evaluation of a six-dimensional
Boltzmann integral, which includes an interaction
function with strong moving singularities (e.g.,
Webb, 1978; Herterich and Hasselmann, 1980). The
dimensionality of the integral is effectively reduced
due the fact that contributions exist only for so-
called quadruplets of four spectral components with
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wavenumber vectors k; through k4 and (radian) fre-
quencies o7 through o4 (0 = 27 f) that satisfy the
following resonance conditions (Hasselmann, 1962,
1963a) :

ki+ky=ks+ks (2)

01+02=03+04 . (3)

This effectively reduces the integral to a three-
dimensional integral. However, even with present
day computer technology, and with various improve-
ments in the efficiency of the computation of these
integrals (e.g., Masuda, 1980; Tracy and Resio, 1982;
Resio and Perrie, 1991; Komatsu and Masuda, 1996;
Van Vledder, 2000) the exact integral is prohibitively
expensive for use in practical models.

From the perspective of practical wave modeling, a
major breakthrough occurred with the development
of the Discrete Interaction Approximation (DIA,
Hasselmann et al., 1985), which proved sufficiently
economical for application in operational wave mod-
els. The DIA achieves a massive speed up compared
to the exact interaction in two ways. First only a
single ‘representative’ quadruplet satisfying Egs. (2),
(3) is considered. This quadruplet is defined by

k: = k1
o3 = (1+)\)01 } ’ (4)

where X is a constant and k; corresponds to dis-
crete spectral components in the wave model only.
For each ki only two (‘mirror image’) quadruplets
satisfy Egs. (2), (3) and (4). Second, the exact inter-
action integral is replaced by a “deep water discrete-
interaction analogue”, which after some manipula-



tion (see Hasselmann et al., 1985, for details) be-
comes (considering deep water for simplicity)
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where 0S,,; represent the discrete contributions to
St for a given discrete spectral component kq, and
where the suffices denote the spectrum and source
term contributions at the four components of the
quadruplet considered.

The DIA made the development of the first third-
generation wave model possible (WAM, WAMDIG,
1988), where Eq. (1) is parameterized without as-
suming the resulting spectral shape. Nevertheless,
even with the success of the DIA, Hasselmann et al.
(1985) recognized shortcomings in the accuracy of
the DIA. Tt is therefore not surprising that alterna-
tive parameterizations of S;,; have been the subject
of much research in the past two decades.

In essence, three different approaches have been used
to produce more accurate yet economical parameter-
izations of Sy;.

a) Simplification and/or speeding up of the exact
interaction equations.

b) Improving the DIA.

c) Development of new technique’s.

NOAA’s National Centers for Environmental Pre-
diction (NCEP) have been involved in the latter two
lines of research, as will be described in more detail
in the following sections. The present introduction
will briefly discuss the efforts at other institutes.

The above approaches to speed up the exact in-
teractions mostly consider using filtering techniques
to reduce the number of computations, and hence
speed the computations (e.g., Snyder et al., 1998;
Hashimoto and Kawaguchi, 2001). In this con-
text, Hashimoto and Kawaguchi (2001) present the
SRIAM method, which is claimed to ‘retain most of
the [interaction’s] accuracy in computing the non-
linear energy transfer’ at about 20 times the costs
of the DIA. Although this claim is not substanti-
ated with actual model integrations, this approach
appears to be promising.

Approaches based on making the DIA more accurate
are closely related to the above methods to make
the exact interactions more economical, as both in-
tend to trade accuracy for economy or vise versa.
Expansions to the DIA (e.g., Ueno and Ishizaka,
1997; Hashimoto and Kawaguchi, 2001; Van Vled-
der, 2001, 2002a), are discussed in Section 2.a. Sev-
eral of the above papers indicate that much progress
can be made while increasing the computational
costs compared to the DIA by an order of magni-
tude or less. A recent review can be found in Tolman
(2003, 2004), which will be used as the basis of the
present study in Section 2. In this context it is also
interesting to consider the studies by Polnikov and
Farina (2002) and Polnikov (2003), who also address
the economy of the DIA.

Other approaches have been suggested to economi-
cally parameterize S,;. Many early approaches were
fully parametric. Several of these are reviewed by
Hasselmann et al. (1985). Generally, fully paramet-
ric methods are shown to either lack accuracy or
the capability of stabilizing the shape of the spec-
trum. One of the methods presented by Hasselmann
et al. (1985) is that of representing S,; by a diffu-
sion operator. Such an approach has more recently
been pursued by Zakharov and Pushkarev (1999)
and Jenkins and Phillips (2001). Whereas Zakharov
and Pushkarev (1999) have shown the feasibility of
such an approach in a third generation wave model,
its accuracy and potential has not yet been exten-
sively tested, and will not be addressed here.

A relatively new method to parameterize the non-
linear interactions is the use of Neural Networks
(NN) as explored by Krasnopolsky et al. (2002) and
Tolman et al. (2005). Although some progress has
been made in this approach, this method has not
yet matured sufficiently to be feasible in a practical
wave model. Recent developments in this approach
at NCEP will be discussed in Section 3. After this,
a brief outlook will be presented in Section 4.

2 DIA APPROACHES

2.a Introduction

A recent review of most suggested modifications to
the DIA is presented in Tolman (2003, 2004). Such
modifications include:

a) Expand the DIA by adding more representa-
tive quadruplets. When S;;; represents the



nonlinear interactions for one of these repre-
sentative quadruplets, and when N quadru-
plets are selected, this multiple DIA or MDIA
is defined as

1 N
Snl = N Z Snl,z' - (6)

i=1,N

b) Replace the definition of the quadruplet layout
given by Eq. (4) to become more versatile. This
will be discussed in more detail in Section 2.b.

¢) Add more tunable proportionality constants to
Eq. (5).

The appropriate references for all these previously
suggested modifications to the DIA can be found in
Tolman (2003, 2004). The latter papers furthermore
introduce a so-called variable DIA (VDIA), where
the parameters defining the DIA (traditionally A and
C) are allowed to vary in spectral space.

It should be noted that in this context, the methods
of Polnikov and Farina (2002) and Polnikov (2003)
to further speed up the DIA have not been consid-
ered, because these methods are directly linked to
the discrete spectral resolution of a model. This is
considered to be an undesirable feature for general
purpose models by the present authors.

Tolman (2003, 2004) investigated the impact of these
modifications to the original DIA using methodolo-
gies taken from previous studies. For a small number
of parametrically defined spectra, the exact nonlin-
ear interactions are calculated using the Web-Resio-
Tracy (WRT) method (Webb, 1978; Tracy and Re-
sio, 1982; Resio and Perrie, 1991), as implemented in
software package developed by Van Vledder (2002b).
The optimum parameter settings for each DIA are
then obtained by minimizing the rms differences
between the exact (WRT) and approximate (DIA)
computations. From this study, the following conclu-
sions were drawn:

1) To increase the accuracy of the DIA, it is of
paramount importance to expand the defini-
tion of the representative quadruplet.

2) An MDIA with expanded quadruplet defini-
tion and N = 4 representative quadruplets can
dramatically improve the performance of the
DIA for selected spectra.

3) Adding additional proportionality constants to
Eq. (5) does not appear useful. Small increases
in accuracy are offset by increased noise in the
solution.

4) The VDIA has only a minor positive impact
compared to a similar DIA with constant com-
ponents. It remains to be seen if the added
complexity of the VDIA can be justified in
light of its performance.

The above findings suggest that an MDIA with an
expanded definition of the quadruplet has potential
for improving the parameterization of the nonlinear
interactions in practical wind wave models. However,
the above studies also led to two alarming observa-
tions, that have guided much of the recent research
at NCEP. First, it was found that not all alternative
versions of the DIA result in stable model integra-
tion when applied in a practical wind wave model.
Second, in spite of the massive improvements of in-
dividual interactions for individual spectra for an
MDIA when compared to the original DIA, differ-
ences in model results when applied in a wave model
appeared minimal.

The next sections will highlight results that have
been obtained at NCEP since the publication of Tol-
man (2004). Conciseness forces us to focus mainly on
the results. A full account of these experiments will
be presented elsewhere.

2.b Defining a general MDIA

Ongoing research at NCEP has focused on several
aspects of the DIA. First, a general deep water
MDIA with the maximum flexibility of the quadru-
plet layout is defined to form the basis of further
research. In principle, such an (M)DIA has already
been defined by Van Vledder (2001). However, his
quadruplet layout is not optimal from a numerical
efficiency perspective for the following reasons.

When a quadruplet layout is defined, two issues are
important. The first is the layout of the quadru-
plet as defined by, for instance, Eq. (4) in combina-
tion with the general resonance conditions (2) and
(3). The second is the way in which this quadruplet
layout is used to sample spectral space. Typically,
the representative quadruplet is applied to each dis-
crete wavenumber k; making up the discrete spec-
tral space. In the original DIA, the quadruplet is
used to sample spectral space by choosing kg = k.
It can be shown that, in principle, the same interac-
tions should be found if the spectral space is sam-
pled by choosing k; equal to any other component
k; of the quadruplet, or to arbitrary wavenumber
vectors made up of a fixed linear combination of k;.



Differences between such approaches only occur due
to different interpolation in discrete spectral space.
Numerical experiments confirm that the choice of kg4
within the above constraints has only a small impact
on individual interactions, or on model integration.

The method of sampling for a given quadruplet lay-
out impacts the numerical efficiency of the MDIA.
Because a significant part of the computational ef-
fort of any DIA is used for interpolating in spectral
space (e.g., Polnikov, 2003), it is prudent to choose
the sampling method to minimize such interpola-
tions. With this in mind, the following representative
quadruplet and sampling method have been defined

k1 3
ka = ||k|:|1+l!2|\ (k1 + k2)
o1 = aoqg = (1+poq
o2 = agoq = (1—p)og L (D)
o3 = azoq = (1+A)og
04 = Qa40q = (1 — /\)O'd
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where o4 = 27 f4 is the frequency corresponding to
k4. The contributions to the DIA corresponding to
Eq. (5) become
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The quadruplet is defined by three parameters A,
© and Af and generally four layouts are found for
each setting of these parameters. To assure that this
DIA reduces to the traditional DIA with 2 solutions
for the representative quadruplet, the factor % is
added. The corresponding MDIA remains defined as

in Eq. (6).

It can be shown that the quadruplet layout (7) is
identical to the layout of Van Vledder (2001), ex-
cept for the way in which spectral space is sampled.
However, the number of discrete spectral points in-
volved in evaluating contributions to S,,; for a given
k4 is reduced from 41 in the approach of Van Vledder
(2001), to 28 in Egs. (7). In principle, this redefini-
tion is expected to speed up the corresponding part
of the computations by approximately 30% due to
a corresponding reduction in the necessary mathe-
matical operations.

Note that the MDIA defined by Egs. (6) through
(8) reduces to the traditional DIA for N =1, 4 =0
and Af = 0° [considering that even then there are
in principle 4 solutions to Eq. (7), whereas there are
only two solutions to Eq. (4)]. This quadruplet def-
inition reduces to the two parameter (A, u) quadru-
plet of Tolman (2004) by choosing kq = (k1 + k»)
and o4 = %(01 + 02), in which case Af is im-
plicitly defined. In the following, these definitions
will be used to describe the one-parameter (1)),
two-parameter (A, u) and three-parameter (\, u, A9)
quadruplets, respectively.

2.c Stability of integration

The second subject of further investigation at NCEP
has been the issue of the stability of the model in-
tegration for several MDIAs. By testing the DIA for
selected spectra only, many previous authors appear
to have assumed implicitly that any DIA would re-
sult in successful model integration. The results pre-
sented in (Tolman, 2003) show that such an assump-
tion would be erroneous. In the latter study, alter-
native MDIAs were incorporated in the wave model
WAVEWATCH III (Tolman, 2002; Tolman et al.,
2002), while otherwise using the default set-up of
this model. By running time limited wave growth
tests, where Eq. (1) is reduced to

OF

E = Stot ) (9)

it was shown that an optimized MDIA with a single
two-parameter representative quadruplet results in
unstable model integrations.

Since the publication of the above report and its
companion paper, these time limited growth tests
have been expanded to investigate the model in-
tegration stability for a wider range of alternative
MDIAs. For MDIAs with a single representative
quadruplet, it was shown that only the traditional
quadruplet layout results in stable model integra-
tion for a broad range of parameter settings. For all
multi-parameters definitions of the quadruplet, the
model integration was found to be systematically un-
stable for significant parts of the parameter space for
which valid quadruplets exist.

Convincing explanations for this behavior have not
been found, although it is believed that this be-
havior may be related to the fact that only the
traditional single-parameter quadruplet mimics the
positive-negative-positive signature of the interac-
tions in each individual discrete contribution to the



interactions (i.e., for each kg).

In contrast, MDIAs based on multi-parameter
quadruplet definitions but with an increased number
of representative quadruplets (N > 1) do show sta-
ble model integration behavior for optimum param-
eter setting based on the optimization for selected
spectra. Consequently, it appears that the more com-
plex quadruplet definitions can only be used in prac-
tical models when multiple representative quadru-
plets are used.

2.d Holistic optimization

The third subject of further investigation at NCEP
has been the way in which each MDIA is optimized.
Traditionally, the optimization has been performed
for a small number of predefined spectra. However, it
has long been known that individual interactions Sy,;
are highly sensitive to small details in the spectral
shape. This may well explain why Tolman (2003)
found that an optimized MDIA with a two parame-
ter (A, u) quadruplet definition and with 4 represen-
tative quadruplets resulted in a much better repre-
sentation of S,,; for test spectra, yet did not appear
to improve model integration notably.

Considering this, it appears to be crucial that pa-
rameterizations of S,; are optimized for a broad
range of spectra that actually occur in wave mod-
els. Furthermore considering that the stability of the
MDIA in model integration is essential, a ‘holistic’
optimization approach has been developed. In this
approach the parameters in the MDIA are not opti-
mized to minimize the error of S,,; for selected spec-
tra F', but to minimize errors of the spectrum F' or
related quantities for a set of test cases.

The WAVEWATCH III model has been set up for
two standard test cases representing time and fetch
limited growth for a wind speed U = 20 ms~!.
For both cases a discrete spectral grid is used with
36 directions (Af = 10°) and with a frequency in-
crement factor of 1.07 and ranging from 0.0418 to
0.417 Hz for the time limited test (35 frequencies)
and from 0.040 to 0.785 Hz for the fetch limited test
(45 frequencies). This spectral resolution has been
adopted to assure sufficient resolution for the refer-
ence computations using the exact WRT algorithm.
In the time limited test the initial conditions consist
of a spectrum with a peak frequency of 0.25 Hz. The
first 48 hourly spectra are used to compute model er-
rors. In the fetch limited growth a spatial resolution
of 25 km is used. Model errors are computed for 50

spectra with a fetch of up to 1250 km after 24 h of
model integration.

The basic spectral output of the WAVEWATCH III
model is the traditional spectrum F'(f,6), defined
in terms of the frequency f and the direction 6.
More robust integrated parameters obtained from
this spectrum are the one dimensional frequency
spectrum F'(f) and the significant wave height H,

F(f) = / F(f.0)d | (10)

Ho=4|[Fna=avF,

where F; is the total wave energy. These three pa-
rameters are all used as the basis for error measures
for the model integration. However, they all focus
on the energy at the spectral peak. Particularly the
high frequency flank of the spectrum, however, is
important for many processes governing air-sea in-
teractions. Additional parameters that focus more
on the high frequency part of the spectrum would
be the one and two dimensional steepness spectra,
which are defined as k2F(f) and k2F(f,6), respec-
tively. Furthermore considering that error measures
should be locally normalized to give equal weight to
errors at difference stages of wave growth, the fol-
lowing five error measures € have been defined

1 (H,p — Hy )
€ = _Z( 5T s,a)
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where n is the number of output points considered in
the optimization, where the suffices  and a denote
the exact and approximated solutions, respectively,
and where

S, = / K2F(f)df . (17)
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Fig. 1: Composite of error measures for the original DIA defined by A and C. Areas in parameters
space are shown where the model error is less that 1.1 times the minimum model error or 2%
in total for the given parameter. Shaded area: wave heights. Solid line: one dimensional spectra
F(f). Dashed line: one dimensional steepness spectra k?F(f). Dotted lines: corresponding two
dimensional spectra. (a) Time limited test. (b) Fetch limited test. 2% error threshold used for
wave heights in panel (b) only. o: Tolman and Chalikov (1996) e: Hasselmann et al. (1985)

Hashimoto and Kawaguchi (2001)

For the original DIA with the quadruplet defined by
A alone, only two parameters need to be optimized
(X and C). For this case, it is feasible to map the be-
havior of the different error measured in full param-
eter space. This is achieved by computing all error
measures for A ranging from 0.12 to 0.30 at intervals
of 0.005, and C ranging from 0.9 107 to 4.0 107 at
intervals of 0.1 107. With these results, maps of all
errors € have been produced (Figures not presented
here). Optimum wave height errors ey were indeed
found to be small (5% or less). Optimum spectral
errors (€1 and €.2), however, were found to be large
(of the order of 100%), whereas optimum steepness
errors (€51 and €5) were smaller, but also sizable
(typically 35%).

A summary of the results is presented in Fig. 1,
which identifies areas in (\,C)-space with near-
optimal behavior for the five error measures € in-
dividually. The one and two dimensional spectral
errors, as well as the one and two dimensional steep-
ness spectrum errors share similar optimum areas
in the parameter space. Wave height errors (shaded
areas) show a fairly narrow but elongated optimum
area. Note that in the time limited tests (Fig. 1a),
the two optimum areas for wave heights are con-
nected if a somewhat larger fractional increase over
the lowest observed error is allowed. Optimum areas
for the wave height and the spectra (em, €.1 and €.2)
overlap, indicating that the wave height H,, and the
spectra F'(f) and F(f,0) can be optimized simul-
taneously. The optimum steepness errors, however,

occupy a distinctly different part of the parameters
space. Hence, the traditional DIA cannot simultane-
ously optimize all five error measures defined here.

Also shown in Fig. 1 are three suggested combina-
tions of (A, C) from literature. Hasselmann et al.
(1985, @) selected A and C to accurately describe the
low frequency positive lobe of Sy;(f) for a test spec-
trum, accepting that this gives large errors in Sy, (f)
at higher frequencies. With the WAVEWATCH III
physics used in the present tests, this results in near
optimal steepness errors, but relatively poor wave
height and spectral errors. Tolman and Chalikov
(1996, o) reduced C from Hasselmann et al. (1985) to
distribute errors of Sy,;(f) for their test spectra more
evenly over frequency space, thus reducing the aver-
age error in Sp,;(f). In the present holistic test, this
leads to near optimal results for wave heights, but
in poorer behavior for spectral and steepness errors.
Finally, Hashimoto and Kawaguchi (2001, O) deter-
mine an optimal (A, C) for a somewhat larger set
of test spectra. Their choice results in near-optimal
wave height and spectral errors, but in more sizable
steepness errors.

A similar mapping of the errors in parameter space
is feasible for an MDIA with one representative
quadruplet, but with more complex quadruplet def-
initions [(A, ), (A, A8) or (A, u, AG)]. All of these,
however, show instable integration behavior in large
parts of parameter space, and will therefore not be
discussed further here.
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Fig. 2: Selected populations in (A1, A2) space from a genetic algorithm for an MDIA with N = 2 and
a quadruplet defined by A only. The rank number corresponds to the (ascending) cost function (.

If MDIAs with more components are considered
(N > 1), full mapping of errors in parameter space
rapidly becomes infeasible. The only alternative is
then to employ a search algorithm. In such algo-
rithms as employed in the present study, the five
previously defined error measures are combined into
a single cost function (

AQHEH +Qe1€e1 T Ae2€e2+As1€51 +As2€52
A + Qe1 + Qe2 + Qg1 + Qg2

(= > (18)
where the factors a represent the weight factors. To
emphasize the high accuracy that could be obtained
for the wave height in the results presented above,
ag is set to 10, while all other weights are set to 1.

In a first attempt to optimize ¢ for MDIAs, a tra-
ditional steepest descent method was adopted. It
rapidly became clear, however, that ¢ has multi-
ple local minima for larger N, and that a descent
method therefore is not appropriate to find the
global minimum of (. Therefore, a genetic search
algorithm was developed (e.g., Eiben and Smith,
2003). In such an algorithm, all parameters of the
MDIA considered are described as a single string
of bits. A population of such strings is then gen-
erated, from which new generations are generated

using rules that are loosely based on biological evo-
lution. Details of the genetic algorithm will be pub-
lished elsewhere.

An example of results of the genetic algorithm is
presented in Fig, 2. Initially, the population is ran-
domly distributed over the valid area of (A;,\2)
space (Fig. 2a). Early generations (e.g, Fig. 2¢) iden-
tify local minima, where either A; or A is close to the
optimum value for N =1 (A = 0.2). Eventually (e.g,
Fig. 2f) most of the population exists near the opti-
mum values of this MDIA. Thus, by evaluating the
evolution of the generations, both local and global
optimum areas can be found in parameter space. Fi-
nal convergence of a genetic algorithm to the global
optimal solution is generally slow. Therefore, mem-
bers with the lowest cost ¢ of a reasonably converged
population have been used as the initial conditions
for a steepest descent method to estimate the actual
global optimum parameters settings.

With the above optimization techniques, increas-
ingly complex MDIAs are optimized. The resulting
cost functions of the configurations investigated so
far are gathered in Table. 1. Only a part of the in-
tended experiments have been performed so far.



Table 1: Optimum cost function ¢ (%) for sev-
eral MDIA’s as a function of the number
of components N and the quadruplet def-
inition. —: not intended for further con-
sideration. ...: experiments planned, but
not yet completed.

quadruplet definition

N1 Q) Ap (ApAb)
1260 — —

2 | 163 — —
30161 116

4 I

5 _

The experiments have started with the most sim-
ple possible configuration; N = 1 and a quadruplet
defined by A only. This is the holistically optimized
original DIA, which serves as a benchmark to assess
the improvements of all more complex MDIAs. The
resulting cost function is dominated by the spectral
errors €.; and €.2, which represent approximately
70% of the total cost function ¢. Adding a second
component to this MDIA (N = 2) dramatically re-
duces the cost function from 26.0% for N = 1 to
16.3% for N = 2. Adding a third component (N = 3)
has limited impact. Note that the corresponding ex-
periment for N = 4 has been partially conducted.
However, the genetic search algorithm showed that
the corresponding optimum MDIA actually repre-
sented a degenerated solution with effectively N = 3,
indicating that no further accuracy can be gained by
adding more components to an MDIA with the orig-
inal quadruplet definition.

Experiments with optimizing MDIAs based on the
two-parameter (A, u) quadruplet have been started.
Considering the stability issues with this quadru-
plet, experiments have started with an MDIA with
N = 3. The resulting cost function again is a sig-
nificant improvement over the corresponding MDIA
with the traditional quadruplet definition. More-
over, the genetic search algorithm indicates that this
MDIA is expected to be generally stable in a large
part of parameter space around the optimum solu-
tion. It should be noted that in particular the spec-
tral errors are greatly improved in such an MDIA.
Several additional experiments are planned, and the
results presented in Table 1 suggest that additional
improvements might be expected for more complex
MDIAs.

Table 2: MDIAs used in the intercomparison of
approaches.

case | A I A6 C
) | () () () x107"
A 35.1 | 0.250 — — 1.00
B 26.0 | 0.212 — — 1.88
C |163]0.127 — — 384
0278 — — 1.83
D 11.6 | 0.063 0.009 — 12.1
0.184 0.028 — 2.40
0.284 0.128 — 5.33

To illustrate the impact of using increasingly more
complex MDIAs, results of several MDIAs for the
time and fetch limited test are compared to the
benchmark results obtained with the WRT method.
The cases considered are gathered in Table 2. Case
A represents the default settings for WAVEWATCH
III. Cases B through D correspond to several best
fits corresponding to Table 1.

Figure 3 presents the wave height H; as a func-
tion of time t or fetch z for the corresponding test.
As already mentioned above, wave heights are de-
scribed accurately using all MDIA approaches. It
should nevertheless be noted that the exact solution
for the time limited growth (solid line in Fig. 3a)
exhibits a more distinct slowing down of the growth
rate with time than any of the MDIAs. The most
complex MDIA tested here (long dashed line) de-
scribes this slowing down of the growth rate system-
atically better than less complex approaches.

Figure 4 presents the one dimensional spectra F(f)
and steepness spectra S(f) = k2F(f) after 24 h of
model integration from the time limited growth test.
These spectra were found to be representative for all
time and fetch limited test spectra. The traditional
DIA with the default settings as used in WAVE-
WATCH III (A, dotted lines) results in a shift of
the peak frequency to higher frequencies, when com-
pared to the reference WRT solution (solid lines).
This may well explain why it has been observed fre-
quently that WAVEWATCH III appears to underes-
timate peak periods for wind seas, even if the total
energy (or Hy) is represented accurately. The opti-
mized traditional DIA (B, dashed line), places the
spectral peak at the proper frequency, but under-
estimates the peak energy density by approximately
40%, Increasing the complexity of the MDIA reduces
this underestimation to just over 10% for model D.



——  WRT solution.

""" case A (WAVEWATCH III)
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Fig. 3: Wave heights H; as a function of (a) time ¢ and (b) fetch z for the corresponding tests for the
reference (WRT) solution and the MDIAs defined in Table 2.
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Fig. 4: One dimensional spectrum F(f) (panel a) and steepness spectrum S(f) = k2F(f) for the time
limited test after 24 h. Legend as in Fig. 3. Spectra normalized with maximum value for WRT

results. Legend as in Fig. 3.

An interesting additional observation can be made
from the steepness spectra in Fig. 4b. Tuning, or
increasing the complexity of the DIA with the tra-
ditional definition of the quadruplet (A only, models
A through C) systematically improves the quality
of the modeled steepness spectra. However, going to
the MDIA with the two-parameter quadruplet def-
inition (A and p) and three components (model D,
long dashed line), actually results in larger errors
in S(f) than are obtained with the less complex
model C. The much more accurate description of
the spectral peak in model D is accompanied by a
spurious second peak in the steepness spectrum at
f ~0.16 Hz.

Figure 5 presents the two dimensional spectra or
spectral differences corresponding to Fig. 4a. The
observed differences between MDIA versions largely
correspond to differences observed in Fig. 4a, with a
decreasing difference between the WRT and MDIA

solutions for increasingly complex MDIAs.
2.e Outlook

The previous section presents intermediate results
of a study into the optimization of MDIAs using a
holistic optimization approach. Whereas the results
obtained so far are promising, much work remains to
be done. Several key issues still need to be addressed.

1) Finish experiments as outlined in Table 1,
adding or removing experiments as deemed
necessary.

2) Perform a detailed analysis of the model re-
sults, in addition to a bulk assessment through
errors € and the cost function (. If necessary,
adjust weights in (.

3) Testing of the resulting MDIAs in more real-
istic conditions, in particular in turning wind
cases.



Fig. 5: (a) Reference spectrum (WRT) after 24 h from time limited test, and differences with results for
models A through D (panels b through e) in Table 2. Contours at factor 2 interval with highest
contour at 0.5 times the maximum spectral energy density for WRT solution. Dashed lines identify
negative values. Gray lines identify spectral (f,6) space at 0.05 Hz and 10° intervals. Differences

defined as WRT - MDIA results.

This would conclude the studies as already initiated.
After its conclusion, the two main issues appear to
be the generalization to arbitrary depths, and the
numerical optimization.

3 NEURAL NETWORKS

3.a Introduction

The development of a Neural Network Interac-
tion Approximation (NNTA) has been pioneered by
Krasnopolsky et al. (2002) and Tolman et al. (2005).
In this section, a summary of their work is pre-
sented. Background references regarding Neural Net-
works (NNs) can be found in the above papers. Both
studies focus on the feasibility of an NNIA. Con-
sidering that the most critical aspect of any inter-
action approximation is to reproduce wave growth
in a wave model, they consider single peak spectra
(‘wind seas’) in deep water only.

The basic precept behind the development of an
NNIA is that the computation of Sy; from F' can be

viewed as a mapping problem, and that NNs are ide-
ally suited to produce accurate and economical ap-
proximations for such problems. Krasnopolsky et al.
(2002) investigated the potential of an NNIA in a
feasibility study. A more mature NNIA is developed
in Tolman et al. (2005). This NNIA has three basic
elements; normalization, decomposition and an NN.

Before an actual NN is applied, the spectrum F'(f, )
source term Sy;(f,0) frequency f and direction 6 are
normalized with a normalizing energy density (F},),
frequency (fn) and direction (6,), resulting in the
following normalized parameters

F(f,0)=F," F(£,6) , (19)
Su(f,0) =g" F,% £ Su(f,0) - (20)
.f = f;l f ) (21)

6=0-9, . (22)

This normalization is performed to enforce proper
scaling behavior. This scaling behavior can be in-
cluded in the NN, but by using the normalized pa-
rameters the NN needs to reproduce only the proper



shape of the nonlinear interactions. This results in
either a cheaper or more accurate NN. Because the
present studies only consider single-peaked wind sea
spectra, the obvious choices for the normalization
parameters are the peak frequency, direction and en-
ergy density fp, 6, and Fj,.

If the NN would be applied directly to ' and S,,
each of the approximately 103 discrete spectral com-
ponent needs to be mapped individually. Such a
large NN is not expected to be economical. To make
the NN more economical, and possibly make the
NNTA less sensitive to the actual spectral resolution,
the spectrum and source term are decomposed on
orthogonal basis functions,

FsX , Su—>Y , (23)

where X and Y represent vectors of coefficients of
the basis functions (typically of the order of 10 or
less). The actual NN is now developed to estimate Y’
from X. In Tolman et al. (2005) Empirical Orthog-
onal Functions (EOFs, Lorenz, 1956; Jolliffe, 1986)
were established as efficient basis functions for the
NNTA. Note that with the adoption of EOFs, this
NNTA can be considered as a generalization of the
EOF based approach discussed in Hasselmann et al.
(1985).

The development of an NN (or NNIA) consists of
a process called training. In this process, the NN is
optimized using a large set of spectra and the cor-
responding exact (WRT) interactions. In the early
studies, parametric wind sea spectra have been used
to assure that the training is based on a broad enve-
lope of possible wind sea spectra. From this training
data set, EOF's are determined first. Second, the NN
is trained using the corresponding vectors X and Y.
Note that the training process can be extremely ex-
pensive, but that the resulting NN (NNTA) is gener-
ally economical.

Tolman et al. (2005) show that such an NNIA can
accurately describe interactions for spectra similar
to those used for the training. Moreover, reasonable
results are obtained for wind sea spectra obtained
from WAVEWATCH III. The cost of such an NNIA
proved comparable to that of the DIA, with nearly
all the computational effort spend in the decomposi-
tion of F into X and the recomposition of Sy from
Y.

In spite of the positive results from these studies,
the resulting NNTA is not (expected to be) able to

result in stable model integration when applied in a
wave model like WAVEWATCH III. The reason for
this failure is that spectra in a wave model include
peculiarities that are not present in the paramet-
ric spectra used to train the NNIA. In such condi-
tions, the NNIA will ‘extrapolate’ rather than ‘in-
terpolate’, and cannot be expected to give accurate
results.

3.b Recent developments

Ongoing research at NCEP focuses on developing
an NNIA that will result in stable and accurate
wave growth computation when applied in WAVE-
WATCH III. Considering the previous section, the
logical first step to achieve this goal is to develop
a training data set that consists of modeled wave
spectra. Such a training data set is generated by the
WAVEWATCH IIT model with the WRT exact in-
teraction approach considering a variety of time lim-
ited wave growth computations according to Eq. (9).
Several runs are made with either constant, or slowly
and randomly varying winds. To obtain a rich data
set, each individual spectrum and source term of
these calculations is included in the training data
set.

Even if this more appropriate training data set is
used, it is doubtful that such a training data set can
ever encompass all possible wind sea spectra that
can occur in the wave model. It is therefore doubtful
that the corresponding NNIA will be able to produce
the level of robustness necessary for incorporation in
a practical wave model. However, a hybrid NNIA can
be developed if it is possible to estimate objectively
when the NNIA becomes inaccurate (‘fails’). In such
a case the hybrid NNTA could revert to an alterna-
tive estimate for S,,;, until the actual NN approach
becomes sufficiently accurate again.

A method to objectively estimate the quality of a
NN estimate has been pioneered by Krasnopolsky
and Schiller (2003). Next to the NN that estimates
Y from X, and inverse NN (iNN) is developed that
estimates X from Y . If the latter estimate is denoted
as X', the similarity between X and X' becomes a
measure for the accuracy of the NN (NNIA). In our
case, an appropriate error measure € is the normal-
ized rms difference between the basis function coef-
ficients X and X'. The corresponding hybrid NNIA
(HNNIA) based on the WRT method is illustrated
in Fig. 6. The process of testing the accuracy of the
NNTA is denoted as the quality control or QC.
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Fig. 6: Layout of the hybrid NNIA (HNNIA),
reverting to the WRT algorithm in cases
where the quality control (QC) indicates
failure of the NN. Note that X and Y
contain decomposition coeflicients for the
normalized spectrum F and source Sp;.

The introduction of the HNNIA serves two purposes.
First and foremost, it is intended to provide robust-
ness to the algorithm when applied in a general wave
model. Second, it can be used to iteratively expand
the training data set for the NNIA in the following
way. Initially, the NNIA is trained with the original
training data set. After the corresponding HNNIA
has been developed, it is applied to the same test
cases that were used to generate the training data
set. All spectra for which the QC indicates failure
are saved together with their exact interaction, and
these data are added to the training data set. With
this expanded training data set a new version of the
(H)NNIA is developed, and the above process can
be repeated.

Good progress has been made at NCEP with the
development of an actual HNNIA. A first train-
ing data set was constructed using 15 time lim-
ited growth cases as described above, resulting in
a training data set of approximately 5000 spectra F’
and source terms S,;. The HNNIA developed with
this first training data set has been implemented in
WAVEWATCH III. Figure 7 shows spectra at the
end of a growth test with a constant wind speed of
26.8 ms~! as obtained with this HNNIA for various
maximum allowed errors €max in the QC. Note that
this represents the first test case used to generate
the training data set.

Figure 7a shows results for a NNIA without QC.
Obviously, this algorithm does not result in accept-
able model spectra. With increasingly aggressive QC
(Figs. 7b through e), the resulting spectra and wave
heights converge to the exact solution as presented

in Fig. 7f. Note that even for eax = 2.5% the NNIA
is accepted for more than 50% of the spectra. Al-
though there are still clear deficiencies in the HN-
NIA based spectra, particularly for larger values of
€max, these results clearly provide proof of concept
for the HNNTA. Nevertheless, these are only prelim-
inary results, and much work remains to be done.
Our future plans in this respect are presented in the
following section.

3.c Outlook

The most obvious deficiency of the the HNNIA with
finite values of €pax is the ‘hole’ in the spectrum at
frequencies between 2 and 3 times f, and roughly
in the wind direction. We are presently investigat-
ing if this behavior can be suppressed by increasing
the accuracy of the NNIA in this frequency range.
The latter can be achieved by properly weighting er-
rors as a function of the frequency f in the training
of the NN in the NNIA. We furthermore intend to
investigate the following aspects of this HNNTA:

1) We need to establish if the iterative expansion
of the training data set indeed increases the
robustness of the NNIA, and the economy and
accuracy of the HNNIA.

2) Close observation of the model integration re-
sults obtained with the HNNIA suggest that
the NNIA systematically reduces time steps
in WAVEWATCH III whereas the WRT al-
gorithm increases time steps. This suggests
that the NNIA introduces noise in the spec-
trum, which is removed by the WRT algorithm
when the QC activates the WRT algorithm.
We intend to investigate the source and spec-
tral representation of such noise, and will con-
sider adding an explicit diffusion element to
the NNTA to suppress such noise.

3) The resulting HNNIA will need to be tested
using independent test cases (Fig. 7 was ob-
tained for one of the training cases), and the
robustness of the HNNIA needs to be demon-
strated for conditions where the assumption of
unimodal wind sea spectra is clearly violated.

If the above issues can be addressed satisfactorily,
the potential of the HNNIA has been clearly estab-
lished. The next step then will be to develop a HN-
NIA for arbitrary spectra (including swell) and ar-
bitrary depths. Such an HNNIA should be trained
with, and applied to realistic wave model applica-
tions.
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Fig. 7: Polar plot representation of spectra F(f,60) at the end of a time limited growth test with a
constant wind speed of 26.8 ms~' obtained with WAVEWATCH III and the first version of the
HNNIA. Contours at factor 2 intervals, starting with the local peak energy density in the spectrum.
Wave height H, in m are presented in the upper right corner of the panels. Arrows identify the
wind direction. Gray lines identify spectral (f,6) space at 0.05 Hz and 10° intervals. Results for
various values of the maximum allowed error €p,x in the QC as identified in upper left corner
panels. Panels (a) and (f) represent the pure NNIA and WRT solutions, respectively.

4 OUTLOOK

The present manuscript presents an brief overview
of recent studies into the modeling of nonlinear in-
teractions in wind wave models. and a more in depth
presentation of recent results obtained in this field at
NCEP. Third generation wave models, in which the
nonlinear interactions are explicitly accounted for,
became feasible for practical wave modeling with the
development of the DIA (Hasselmann et al., 1985).
Although the DIA was very successful in this re-
spect, its shortcoming were already identified in the
original paper. Much effort has been spend on find-
ing an more accurate yet economical alternative to
the DIA. With the ever increasing computational
power available, more expensive methods are becom-
ing feasible.

Two possible alternatives to the DIA have been iden-
tified. The first is the SRTAM method (Hashimoto
and Kawaguchi, 2001), which represents a reduced
version of the exact interactions. This method ap-
pears accurate for test spectra, but, to the knowledge
of the present authors, has not been tested rigor-
ously as part of a practical wave model. The second
methods is based on describing the interactions as
a diffusion process (Zakharov and Pushkarev, 1999;
Jenkins and Phillips, 2001). The first of these pa-
pers establishes this approach as feasible in a wave
model, however, a rigorous assessment of the accu-
racy of such an approach does not appear to have
been made. The present study provides a frame-
work of holistic testing or optimization of these ap-
proaches, which will become essential in comparing
these methods to alternatives presented here.



The first alternative to the DIA considered in de-
tail here is the expansion of the traditional DIA.
Such an approach has been advocated by many pre-
vious authors, as reviewed in Section 1. The present
study presents a holistic method to optimize alter-
native DIAs. It is shown that by expanding the num-
ber of representative quadruplets, and by expanding
the definition of the representative quadruplet, the
performance of the DIA (MDIA) can be improved
dramatically. Ongoing research in this direction is
designed to probe how far this improvement can go.

By performing the (M)DIA optimization, it became
clear that the parameter settings of the DIA as used
in the WAVEWATCH III model are responsible for
systematic errors in the peak frequency or period for
this model for wind seas. With the results presented
here, one might be tempted to simply use the opti-
mized parameter settings of the corresponding DIA
in this model. However, such an approach is not ex-
pected to improve the behavior of WAVEWATCH
ITI, because all other source terms are designed /
tuned to work with the default DIA settings of this
model. Hence, introducing a more appropriate DIA
in WAVEWATCH III will require a reconsideration
or retuning of all other source terms.

Furthermore, this study shows the potential of
Hybrid Neural Network Interaction Approximation
(HNNIA) in actual wave model integration. How-
ever, much work still needs to be done in this field,
as identified in Section 3.c.

Finally, the new work presented here opens another
potential avenue of attempting to improve the de-
scription of the nonlinear interactions in practical
wave models. In principle it appears possible to dy-
namically adjust the parameters of a DIA depending
on the actual input spectrum. A natural way to do
this would be a by using a NN. Alternatively, more of
the interaction physics could be built into the NNTA,
by using DIA solutions as ‘basis functions’. Both ap-
proaches would result in a Neural Network Discrete
Interaction Approximation (NNDIA), which we in-
tend to pursue further.
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