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ABSTRACT

QuikSCAT was launched in June 1999 to measure wind vectors over the ocean surface at
10m. This satellite introduced a new antenna design for measuring the wind field over the
oceans in the Ku-band frequency (14.6GHz). This report summarizes an evaluation that
has been performed to determine the impact of rain contamination on the wind retrievals
and to determine an appropriate quality control (QC) method.

Various evaluations of QUIKSCAT data have revealed that there are several QC problems
with the ocean surface wind retrievals. There is a loss of accuracy for data along the outer
edges (200 km) of the swath. Also, the data are susceptible to rain contamination.
Although only about 5% data are normally contaminated by rain, rain occurs where the
weather situations are active (i.e., convergence zones, fronts, storms and hurricanes) and

good quality wind data are needed to accurately analyze the meso-scale marine surface

wind patterns associated with these systems. Unfortunately, there are no concurrent direct
measurements of rain along the QUIKSCAT orbit, but algorithms have been developed to
detect rain using QuikSCAT data. In this note two algorithms are investigated: the first
is the “probability of rain” index developed by Huddleston & Styles (2000), which is based
on onboard satellite measurements that are sensitive to rain and included in the
QUIKSCAT retrieval data; and the other was developed by Portabella & Stoffelen (2002)
based on the deviation of the Most Likely Estimate (MLE) of the selected vector from an
expected MLE. The purpose of this comparison is to determine whether one can improve

the QC of rain contamination the QUIKSCAT retrievals for numerical weather prediction.






1. INTRODUCTION

At National Centers for Environmental Prediction (NCEP), in-situ and satellite derived
observations of varying quantity and quality are used by the global data assimilation
systems provide numerical analyses for weather forecast models. It is customary practice
to evaluate the timeliness of availability and the quality of new data sets before using them
in operational models. The accuracy specifications for satellite ocean surface wind

retrievals are:

1) the RMS speed errors should be less than 2 m/s for winds up to 20 m/s and no

more than 10% for wind speeds above 20 m/s and,
2) the RMS errors for direction should be less than 20 degrees.

Data assimilation systems are based on a set of apriorimathematical formulations that are
~ designed to minimize the errors between the first guess fields provided by a model and
observations received in “real-time” in order to produce an accurate initial condition for a
numerical forecast model. These procedures involve performing quality control (QC) of
data and determining weights of the data before they are ingested into the analysis. The
fewer the QC decisions the data assimilation system has to make, the better the chances
that poor quality data will not influence the analysis. Or, to state it alternatively, the better

the quality of the data, the better the quality of the analysis.

QuikSCAT was launched in June 1999 with a Ku-band (14.6 GHz) scatterometer on board,

and ocean surface wind vector retrievals from it became available in “real-time” (within
three hours of observation) for operational use at NCEP during February 2000.
Assimilation of these data into the National Centers for Environmental Prediction (NCEP)

operational Global Forecast System (GFS) was implemented on January 15, 2002 (Yu).

The design of the QuikSCAT antenna system is different than in previous scatterometers.
QuikSCAT uses two antennas at different incident angles (46 & 54 degrees) to scanthe



ocean surface through 360 degrees of the azimuth. This design provides for two
backscatter (0°) measurements over a surface location from each antennae, one from the
fore look and one from the aft look. Thus, for the two antenna design, there are a
maximum of four (¢°) values at each location that can be used to retrieve wind vectors.
There are certain regions across the swath where the accuracy will deteriorate. There are
two such regions which are located along the outer 200km edges on opposite sides of the
swath over which only one of the antennas is capable of retrieving radar backscatter
measurements (two values), thus, limiting the accuracy of the retrieval. A third region is
near nadir, where the separation between viewing angles and nadir are small resulting in

less discrimination for determining wind direction.

As is well known, the wind retrieval inversion process that converis scatterometer radar
backscatter measurements into a wind vector does not yield a unique solution, and can
provide up to four vector solutions. The backscatter values are modeled: om=1(u,x), for
given wind speeds (u) and wind directions ( x) relative to the motion of the satellite. To

determine the u, X from satellite retrievals of o°, it is necessary to find the closest fits of

the satellites retrievals of 0° to the geophysical model function om by using the Most
Likelihood Estimates (MLE) as defined by:
N

J= 2 (0° - om)2/ Var( om)

I=1
where there are N (four or less) values of om, and Var(om) is the measurement error
variance. A local minima of J with a given om then corresponds to a wind vector solution
u,X. Unfortunately, there are more than one local minima (maybe up to four). So, the
solutions are ranked in order by their MLE. The closer the MLE is to zero the higher the
certainity of the solution, and the further away it is from zero, the less the certainty.

But the first ranked MLE wind vector solution is not always the “best” wind retrieval
solution (Rufenach, 1998). Hence, an additional procedure is applied to reduce errors in
the wind vector (direction) selection process. A background wind field, obtained from the

6-hour forecast from NCEP’s global forecast model, is used to provide additional



information in the vector selection. A median filter technique (Shaffer et al., 1991) is
applied across the swath using a set of wind vectors in a 7X7 window centered at the cell
of concern. It is a two-step process: 1) The 7X7 window is initialized with either first or
second ranked wind vector solutions based on MLE solutions, whichever is closest to the
background wind direction (JPL, 2000); and then 2) the median filter technique finds the
median vector for the center cell of wind vectors in the window. The MLE solution that is
closest to the median vector is the selected vector. The process is repeated until no
solutions are changed. The selected vectors from the above median filtering process will
be referred to as the nudged solutions. Although nudging can provide a relatively
consistent meteorological wind field, the question exists of how much information in the
nudged wind field is from the original scatterometer derived wind at a cell and how much
is forced from the median filtering technique. And further, the more solutions available to
chose from, the lower the skill is in the selection of the best retrieval (Stoffelen, et. al. 2000
and Krasnopolsky, 2001).

It is known that rainfall will affect the radar backscatter in the Ku band of QuikSCAT. The
effect i_s_r;l-édema-réégecéas; gf_tHeEr-ge_i_n;i&ént ang}és of the_scanhihg-é;tar-mae, whiéh
increase the path length of the QuikSCAT beam over past scatterometers. Recent studies
have shown that wind speed errors are related to the rain rate and the wind speed itself
(ie, Weissman et al., 2002). In that study, NWS radar, QuikSCAT and buoy data in close
proximity were examined to determine the impact of rain on a QuikSCAT wind retrieval.
The results are encouraging and have provided useful information on contamination. The
radar backscatter signal is distorted due to increased atmospheric attenuation and
scattering from rain falling through the atmosphere, and to increased ocean surface
scattering from rain striking the ocean surface. In general, at low rain rates and wind
speeds, the contamination comes from the increased ocean surface roughness, but at
high rain rates contamination is due to increases in atmospheric scattering from the rain
itself. Regions near and around storm centers and fronts are active weather areas, usually
with moderate winds and rain. Since rain decreases the accuracy of the backscatter
values, the accuracy of the wind vector (speed and direction) retrievals in and around

storm centers and fronts will correspondingly decrease. Rainfall is normally characterized



by small spatial scales with short time scales. Rain can move quickly and at the same time
change its intensity. It is locally driven by horizontal convergence of moisture, usually along
fronts and cyclonic systems, and in the tropics by individual convective elements and/or
systems. Determining the impact of rain on a QuikSCAT wind retrieval is, therefore, a

complex exercise.

Several algorithms have been developed to detect rain contamination. In fact, a probability
of rain value (Huddleston and Stiles, 2000) is included as part of the retrieval data from the
Jet propulsion Laboratory (JPL). It is based on a set of satellite derived parameters that
are sensitive to rain. Also, Portabella and Stoffelen (2001, 2002) at the Koninklijk
Nederlands Meteorologisch Instituut (KNMI) have recently developed a rain detection
procedure based on determining the deviation of the observed MLE from the expected rain
free MLE at each cell location. This evaluation has been made to determine the possibility
of improving QuikSCAT retrieval QC for rainfall detection based on these two techniques
referred to as JPL and KNMI throughout this note.

2. FIXED BUOY COMPARISON STATISTICS

A “real-time” buoy-satellite match-up data base has been assembled from September 12,
2002 to May 31, 2003 (about 8 %2 months). This data base collocates mid-latitude fixed
buoy wind data with QuikSCAT wind retrievals four times daily; at 00, 06, 12, 18 UTC.
Satellite data are collocated in time to be within +/- 3hours, and in space within 50km.
Winds from fixed buoys are adjusted neutrally to 10 meters above the ocean surface, and
the buoys are at least 100 km from land. This collocation space/time window is broader
than the window of 30 min and 25 km used during the original calibration validation efforts,
but was done to obtain a larger sample in some of the data sparse categories. This will
no doubt degrade the absolute validation statistics to some extent. But comparisons can
still be made in a relative sense.

1) Rain Influence



Satellite derived wind speed and direction vs. buoy wind speed and direction data are
presented in sets of scatterplots. Figure 1, a & b are scatterplots for the entire matchup
data set (excluding the outer 200 km edges of the swath). These pairs are given for speed
(a) and fordirection (b). The overall statistics show that QuikSCAT wind vector retrievals,
when compared to buoys, are close to the wind specifications with a speed RMS of 2.04
m/s and direction RMS of 23.4 degrees (Table 1). These statistics are slightly poorer than
the specification requirements, in part because of the broader time/space matchup
windows used as explained above. It is obvious that there are many individual satellite
retrieval outliers which exceed the buoy speed and direction values much more than the
prescribed specification limits. Many of these retrievals may be contaminated by rain. At
high wind speed (>20 m/s) there are relatively few observations (<0.5%) so that the
reliability of those statistics may not be as accurate. Figures 2 through 6 are comparisons
of retrievals for various JPL probabilities of rain values (no rain, 0<5%, 5-10%, 10-50%,
and 50-100%).

For those retrievals that are rain free by JPL classification (probability of rain is equal to
zero), most of the extreme outliers are not present. In this set, the speed bias is slightly
positive at 0.15 m/s, and the RMS is 1.54 m/s. But, for directions, there is almost no
improvement with the RMS being about 22.0 degrees. For the next three probability
categories, 0<5%, 5-10%, 10-50%, (see Figures 3, 4, 5) the wind speed bias increases
from 0.69 m/s to 1.39 m/s to 2.39 m/s and RMS increases from 1.99 m/s to 2.66 m/s to
3.69 m/s. For wind direction, the RMS increases from 21.5to 27.0 to 34.1 degrees fo each
of the 3 previous probability of rain categories. There is a large degradation on the wind
retrieval accuracy as the probability of rain increases. Rain contamination is clearly evident
when the probability is greater than 50% as seen in figure 6. The wind speed bias is 7.24
m/s and RMS is 8.70 m/s and the RMS of direction is 55.7 degrees. There are almost no
wind speed retrievals less than 10 m/s. Obviously the satellite scatterometer is receiving

most of the backscatter from the rain falling through the atmosphere.

All the data with a JPL probability of rain greater than zero, are assumed to be rain
contaminated to some extent. For this data, the speed bias is1.21 and RMS is 2.99, and



the direction RMS is 25.9 degrees, which obviously contain data with errors larger than the
specifications. Yet some of the winds at the lower probability of rain were shown to be
adequate. Unfortunately, if winds with only “no” probability of rain (JPL) were to be
accepted, only 70.1% of QUIKSCAT wind could be used.

In order to increase the amount of wind retrievals available to the Global Forecast
System, a rain flag was designed based on a threshold from the probability of rain, for
which the influence of rain contamination would still be small. A probability of rain
threshold of 10% was chosen, which is reasonable based on the above statistics. This
threshold rejects about 5% of the data when using this probability to specify rain, the
winds still easily meet the specifications with a speed BIAS of 0.32 m/s and RMS of 1.72
m/s and direction RMS of 22.0. This will be referred to as the EMC rain detection
technique. The statistics for the rejected data clearly show the data are rain contaminated
because of the large speed bias of 3.79 m/s and RMS of 4.32 m/s, and direction RMS of
41.4 degrees.

Statistics were also determined using the KNMI rain detection technique in comparison
with the EMC technique. For accepted data (no rain), the speed bias is 0.32 and RMS is
1.73 m/s and direction is RMS 21.1. About 6% of the data are rejected, with statistics for
KNMI similar to those of EMC. But it will be shown later that there are important

differences.

The statistics for rain dependence are presented in Table 1 with statistical comparisons in
four sections: 1) all the data, 2) by JPL categories, 3) by EMC (for no or yes rain
contamination) and 4) by KNMI (for no or yes rain contamination).

2) Selection Rank
A fundamental problem with a scatterometer is that the inversion process (radar

backscatter to a wind vector) does not yield a unique solution, and may yield up to four
solutions. The solutions are then ranked in order of their Most Likely Estimate (MLE)



values. However, it has been shown that the first ranked solution is not necessarily best
direction solution. The reasons for this depend on the noise in the radar backscatter
measured by the satellite, changes in geometry due to the cell location across the swath
and rain. The final selection of the wind vector is obtained from any one of the available

MLE solutions through the nudging process also described above.

The number of selected retrievals for each rank is shown in table 2. The first rank
selected (rank 1) retrievals account for about 80% of the total. The error statistics (Table
3) reveal the importance rank of the selection as there is a degradation in the wind speed
and direction accuracy the lower the selection rank. Only rank 1 selected vectors meet the
accuracy specifications (Speed bias of 0.47 m/s, RMS of 2.04 m/s and Direction RMS of
23.4 degrees), whereas rank 2 & 3 are marginally poorer especially for wind directions.
When a rank 4 vector is selected, there is a strong indication of rain contamination in many
of the retrievals (Speed bias of 1.05 m/s, RMS of 2.88m/s and Direction RMS of 60.1
degrees).

3) Number of Solutions at a Cell

The number of wind vector solutions at a cell is shown in Table 4. In this sample there are
no cells with just a single retrieval. And the number of solutions decreases from about 42%
for two solutions to 25% for four solutions. The error statistics in Table 5 show that there
is not much of a difference of wind direction accuracy (RMS) based on the number of
wind vector solutions. Krasnopolsky and Gemmill (2001) estimated the no skill level
(RMS) of a selected wind vector based on the number of vectors available (see last column
of table 5), and the no skill level decreases with increasing number of wind solutions .
Since there is little difference in the accuracy of wind direction, there is then a measured

decrease in the skill of wind direction when more directions are available.

When 3 wind vectors are available at a cell, both speed and direction are slightly poorer
(Speed Bias 0.56 m/s and RMS of 24.1 degrees), than for the cases when there are 2 or

4 vectors. available. But clearly, there is skill in most of the direction retrievals.



4) Speed Dependency

QuikSCAT wind speed estimates are good in the mid-speed range of 4 to 20 m/s (table
6). At low wind speeds (< 4 m/s), the bias and RMS are high (1.28 m/s & 2.31 m/s) and the
direction RMS is 52.8 degrees. Throughout this note, if wind speeds are less than 4.0 m/s
they are not included in wind direction statistics, although they are included in wind speed
statistics. It is assumed that both the satellite retrievals and buoy measurements are
poor at resolving wind direction at low wind speeds. RMS for directions for wind speeds
above 8 m/s is consistent at 20. For wind speeds above 20 m/s, the low bias is uncertain
as there are too few retrievals to substantiate its value, which can be seen from figure 1.
For strong weather systems with high winds speeds, the selected directions appear to be
close to the buoy data in terms of the specification.

4) Rain Flag Comparisons

Two rain flags are compared for rain contamination QC: 1) the EMC method, which is
based on an extension of JPL probability of rain; and 2) the KNMI method, based on
deviations of calculated MLE from expected rain-free retrievals. First, return to Table 1
(the bottom 4 categories) to see that the EMC method generates mean wind speeds of
8,4 m/s and RMS of 1.74 m/s and direction RMS of 23.2 degrees for the no rain cases,
and 15.2 m/s, 5.60 m/s & 42.0 degrees, respectively, for the rain cases. A significant
increase in the mean speed, and RMS difference in speed and direction fo the rain cases.
The same table for KNMI provides mean wind speeds of 8.5 m/s and RMS of 1.77 m/s
and directions RMS of 22.1 degrees for the no rain cases and 11.8 m/s, 4.71 m/s and 47.2
degrees, respectively, for the rain cases. Rain contamination is being detected in the
general sense by both EMC and KNMI, but to what extent do they discriminate individually.
Although the “no rain” statistics are similar for both methods, there are differences in the
“rain” cases. KNMI detects more rain than EMC (6.7 vs. 4.6%, respectively) and EMC
is rejecting more high wind speed data than KNMI. Plots, not shown, show that EMC
consistently identifies more rain cell in storms than KNMI.



A 2-way contingency table of 4 categories is created to separate the observations into
categories by the rain detection technique as: 1) no rain EMC vs no rain KNMI; 2) no rain
EMC vs yes rain KNMI; 3) yes rain EMC vs no rain KNMI; and 4) yes rain EMC vs yes rain
KNMI. Table 7 presents the number of the 2-way comparisions and percentages of the total
of each category and Table 8 presents the error statistics for speed and direction. When
both rain QC procedures agree (93%) the error statistics clearly suggest that the
discrimination between no rain and rain is reliable.

When the two methods disagree (7.0 %), the interpretation is not so clear. But, the error
statistics do indicate that these categories contain rain.contamination. KNMI detects more
rain in the EMC rain free cells (4.5% of the total) than EMC detects in the rain free cells
of KNMI (2.5%). This suggests that KNMI may a better discriminator for rain

contamination.

Another comparison of the agreement/disagreement between the KNMI and JPL algorithms

for whether rain is detected or not is presented in Table 9. This table gives the percent of

wind vector retrievals determined to be rain free by the KNMI technique in each category
of rank selection and probability of rain. The trends in this table are clear: 1): the higher
the rank selection, the higher the percent of acceptance by KNMI; and 2). the lower the
probability of rain, the higher the percent of acceptance by KNMI. For rank 1 winds, with
JPL no probability of rain (PR=0), the KNMI technique accepts 98.8% (almost perfect
agreement) of those retrievals as rain free, whereas for rank 4 wind with a PR within 50-
100%, the KNMI technique accepts only 5.3% as rain free (close to perfect agreement).
As both the selected rank and the JPL probability of rain increases there is decreasing
probability that KNMI will indicate rain free retrievals. There are two- categories where
there is a disagreement between JPL (reject) and KNMI (accept). That is for the probability
of rain in the category of 10<PR<50, for both rank 1 (83.5% accept) and rank 2 (65.9%
accept) selection. It can be seen that for the EMC method rain detection limit of 10%
should be modified. For JPL with no probability (PR=0), all rank selections agree well over
50% with KNMI acceptance of no rain, but for the next category of rain 0<PR< 5% rank 4

selected winds, the KNMI acceptance of no rain is below 50%. For the rain category of



5<PR<10%, both rank 3 and 4 are below 50%.

4. CONCLUSIONS

The purpose of this note was to compare two rain detection algorithms for QuikSCAT
ocean surface wind retrievals to determine their attributes. These algorithms were
empirically derived with collocated data sets that were assembled the could relate satellite
measured variables with rainfall. Since there are no concurrent rainfall data available
along the full satellite orbit, it is not possible to determine directly whether the rain or no rain

within a satellite measurement. One can only speculate on estimates.

The JPL probability of rain index is a good discriminator for the accuracy of wind retrievals.
The higher the probability of rain (JPL) the worse is the wind retrieval accuracy. Rain
contamination is especially severe when the probability of rain (JPL) is greater than 50%.
But rain contamination is evident even as the probability of rain approaches 10%. The
wind retrieval accuracies degrade as the selection rank increases. Only 1* rank data are
totally acceptable. Rank 2 & 3 retrievals are marginal, Rank4 selections clearly show the
effects of rain on both wind speed and direction and should not be used. The wind retrieval
accuracies are satisfactory for wind speeds between 4 m/s and 20 m/s. And thereis a
high bias at low wind speeds (< 4 /s), and a low bias at high wind speeds (> 20m/s), which

is difficult to validate because of the small amount of data in this range.

KNMI discriminates rain better at high wind speeds than JPL, although KNMI does detect
more rain at the lower speeds. The results show that for EMC rain detection that 10% is
an adequate lower limit for the JPL probability of rain. When both the KNMI and EMC
technigues agree (938 % of cells) on rain/no rain detection, the discrimination appears

accurate. .

Finally, itis recommended that Table 10 should be used as a guide for accepting/rejecting

QuikSCAT retrievals as a result of rain.
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QuikSCAT | BUOY |SPEED |SPEED | DIRECTION | NUMBER/ | PLOT

MEAN MEAN | BIAS RMS L % Diagram

SPEED SPEED Number
Al 8.47 8.00 0.47 2.04 23.4 82394/ |1
WEATHER 100.0

JPL - PROBABILITY OF RAIN
NO RAIN 7.07 6.91 0.15 1.54 22.0 57761/ - |2
JPL 70.1%
0<PR<5% | 10.92 10.23 0.69 1.99 215 18758/ |3
JPL 22.7%
5<PR<10% | 13.24 11.85 1.39 2.66 27.0 2255 / 4
JPL 2.7%
10<PR<50 | 14.15 11.76 2.39 3.69 34.1 2573/ 5
JPL 3.1%
50<PR<100 | 17.52 10.28 7.24 8.70 55.7 1047 / 6
JPL 1.3%
YESRAIN | 11.75 10.54 1.21 2.88 25.9 24633

| PR>0% - ' | 29.9%

JPL

EMC - RAIN FLAG
NO RAIN 8.16 7.16 0.32 1.72 22.1 78774/
PR<10% 95.6 %
EMC
YESRAIN | 15.13 11.33 3.79 4.32 41.4 3620 /
PR > 10% 4.4%
EMC

KNMI - RAIN FLAG

NO RAIN 8.26 7.94 0.32 1.73 21.1 77124/
KNMI 93.6%
YESRAIN | 11.51 8.90 2.61 4.60 45.2 5270/
KNMI 6.4%




Table 1. QuikSCAT vs buoy collocated match-up wind data by rain category The first 9
categories are based on using rain probabilities from JPL, the last two are based on the
KNMI techniques. . With speed in m/s and direction in degrees. With speed in m/s and
direction (for speeds > 4.0 m/s) in degrees. Bias = QuikSCAT - buoy. The space window
was 50 km and +/- 3hours. There are 4 groupings of the data in this table. 1) are statistics
for all the data; 2) are the statistics for a sequence for probability of rain categories, 3) are
statistics for the EMC QC rain detection based on the probability of rain and the last 4) are
the statistics for the KNMI rain detection technique.



RANK Number / %
Total 82394 / 100.0%
1 64822 /78.7%
2 14398 / 17.5%
3 © 2630/3.3%
4 494/ 0.5%

Table 2. Number of selected Wind Vectors and percentages by their rank.

QuikSCAT | BUOY SPEED | SPEED | DIRECTION | NUMBER/
MEAN MEAN BIAS RMS RMS %
SPEED | SPEED
ALL
NUDGED | 8.47 8.00 0.47 2.04 23.4 82394/
| paTa——| , DRSS "N MR
RANK1 | 853 8.15 0.38 1.90 20.7 64822/
78.6%
RANK2 |8.47 7.70 0.77 2.46 30.9 14398/
17.5%
RANK3 | 6.99 6.22 0.77 2.54 37.6 2680
3.3%
RANK 4 | 7.91 6.86 1.05 288 57.1 494/
0.6%

Table 3. QuikSCAT vs buoy collocated match-up wind data by rank of selection. With
speed in m/s and direction in degrees. With speed in m/s and direction (for speeds > 4.0
m/s) in degrees. Bias = QuikSCAT - buoy. The space window was 50 km and +/- 3hours.



NWVA Number / %
Total 8i2394/ 100.0%
1 0/0.0%

2 347217422 %
3 27376/ 33.2%
4 20297 / 24.6 %

Table 4. Number of Wind Vectors Available (NWVA) and percentage at a cell; ie there were no cells

with just one wind vector, and there were 34721 cells that had two wind vectors, and so forth

QuikSCAT BUOY SPEED SPEED RMS | DIRECTION NUMBER/ DIRECTION
MEAN MEAN BIAS RMS % NO SKILL
SPEED SPEED RMS*
ALL
NUDGED 8.47 8.00 0.47 2.04 234 82394/
DATA . —— T - i 100%
NWVA 1 - 0/100%
NWVA 2 8.20 7.83 0.37 1.96 229 34721/ 73*
421%
NWVA 3 8.81 8.25 0.56 2.23 241 27376/ 49*
33.3%
NWVA 4 8.45 7.95 0.50 1.89 23.1 20297 37*
24.6%

Table 5. QuikSCAT vs buoy collocated match-up wind data by the number of wind vectors
available (NWVA).
direction (for speeds > 4.0 m/s) in degrees. Bias = QuikSCAT - buoy. The space window

With speed in m/s and direction in degrees. With speed in m/s and

was 50 km and +/- 3hours.
(*) The final column, direction no skill in degrees is presented from Krasnopolsky and
Gemmill, 2001, Table 1, page 5.



SPEED BIAS SPEED RMS DIRECTION RMS NUMBER/
%

ALL SPEEDS 0.47 2.04 23.4 82394 /100.0%
0<SPEED<4 1.21 2.31 [ 52.8]*" 11080/13.4%
4<SPEED<8 0.49 1.91 27.3 32192/ 39.1%
8<SPEED<12 0.24 1.95 19.2 27191/ 33.0%
12<SPEED<20 0.28 2.28 204 11704/ 14.2%
SPEED>20 -1.71 3.29 21.9 227/0.3%

Table 6. QuikSCAT vs buoy collocated match-up wind data by buoy wind speed interval.
With speed in m/s and direction in m/s and direction in degrees. Bias = QuikSCAT - buoy.
At low wind speeds of < 4.0 m/s, wind directions are not included in the direction overall

statistics. The space window was 50 km and +/- 3hours.
KNMI NO RAIN KNMI YES RAIN TOTALS
EMC NO RAIN 75032/91.1% 3742/ 4.5% | 78774/ 95..6%
EMC YES RAIN 2092/ 2.5% 1528/1.9% 3620/ 4.4%
TOTALS 77124/ 93.6% 5270/6.4% 82394 /100.0%

Table 7. Two way contingency table for the comparison of the KNMI vs EMC rain detection methods

in terms of percentages of agreements and disagreements between the two methods.




NO RAIN - KNMI

YES RAIN - KNMI

NO RAIN - EMC SPEED SPEED
BIAS 0.27 BIAS 1.19
RMS 1.65 RMS 2.52
DIRECTION DIRECTION
RMS 23.0 RMS 48.2
YES RAIN - EMC SPEED SPEED
BIAS 2.13 BIAS 6.07
RMS 3.57 RMS 7.58
DIRECTION DIRECTION
RMS 32.1 RMS 58.8

Table 8.Evaluation of the KNMI vs EMC rain detection methods in terms of satellite vs

buoy error statistics for agreements and disagreements between the two methods.

Probability of PR=0 0<PR<5 5<PR< 10 10<PR< 50 50 <PR<100
Rain-JPL
H_.A_I\IK'I_ _ 98.8 95.3 89.4 83.5 26.8
RANK 2 91.9 82.1 76.1 65.9 18.0
RANK 3 82.0 50.7 28.9 29.0 9.4
RANK 4 66.7 26.0 16.0 14.3 53

TABLE 9. The comparison between the percent of acceptance (no rain) of the wind retrieval by KNMI given the

probability of rain (JPL) of a Quikscat wind retrieval and its selected wind vector rank,

Probability of PR=0 0 <PR<5 5<PR <10 10<PR< 50 50 <PR<100
Rain-JPL

RANK 1 Accept Accept Accept Reject Reject
RANK 2 Accept Accept Accept Reject ' Reject
RANK 3 Accept Accept (?) Reject Reject Reject
RANK 4 Accept Reject Reject Reject Reject

TABLE 10. Accept/reject QuikSCAT retrievals as determined by selection of rank and probability of rain based

on Table 9 results. .




APPENDIX (A) presents the scatterplots of collocated buoy date vs QuikSCAT retrievals
for spéed (left) and direction (right) for various rain contamination uéing JPL probability of
rain categories. Scatterplots were generated by finding the number of matched points in
0.1 m/s boxes for speed and 0.1 degree boxes for direction. Color coding for boxes with
no matches is left blank, with 1 match is red, with 2-5 matches are green, with 6-10
matches are blue and greater than 10 matches are purple.

Figure 1, All interior swath data

Figure 2, No rain, PR=0% (JPL)

Figure 3, ?? rain, 0<PR<05% (JPL)

Figure 4, Light rain, 05<PR<10% (JPL)
Figure 5, Moderate rain, 10<PR<50% (JPL)
Figure 6, Heavy rain, PR>50% (JPL)
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