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Abstract

The present report assesses the parallel performance of the WAVE-
WATCH III wave model a Linux cluster. This model is developed for
parallel computer architecture, but implicitly assumes the presence of a
parallel file system to assure the integrity of all raw data output files.
Alternative output methods for non-parallel file systems are discussed, in-
cluded in the model and tested.
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1 Introduction

This study describes testing and modification of the WAVEWATCH III wave
model (Tolman, 2002¢) for running on a Linux cluster. WAVEWATCH III was
originally designed for running on supercomputers at NCEP. Its performance
has been documented in, for instance, Tolman et al. (2002), and Moon et al.
(2003). Its efficiency on NCEP’s parallel computers is documented in Tolman
(2002a). From its inception code transparency and portability has been deemed
important. The resulting code has been applied successfully on a wide range of
computer hardware, including single processor, shared memory multiprocessor,
and distributed memory multiprocessor computer architectures.

An important reason to enforce portability has been that typically smaller
computers have been used to develop WAVEWATCH III. For instance, the dis-
tributed memory version of WAVEWATCH III is based on the Message-Passing
Interface (MPI) standard for communication between processors (e.g., Gropp
et al., 1997). The first MPI version of WAVEWATCH III was mostly developed
on a single processor Linux machine, which mimicked a multiprocessor machine
using the portable MPICH package!. Similarly, most of the tests of WAVE-
WATCH III version 2.22 as reported in Tolman (2002b) were run on an SGI™
1450 server, consisting of four 700 MHz Intel Xeon chips with 2 Mb of shared
memory. All these tests were run using the shared memory parallel option of the
model, using the OpenMP standard.

NCEP recently purchased a new Linux cluster to facilitate wave model devel-
opment. The cluster is a Rocketcalc™ Titan T8-240, consisting of 8 2.4 GHz Intel
Xeon Processors arranged on four mother boards, with 2 Mb of shared memory
on each board. The boards are interconnected using a copper Gigabit Ethernet
switch, and use a disk pack residing on a front end Linux PC. To run a par-
allel FORTRAN code, the Portland compiler version 4.1-1 and the LAM-MPI?
package version 6.5.9 are installed. Both were recommended by the vendor after
extensive benchmarking with WAVEWATCH III.

The present report presents timing and implementation issues for WAVE-
WATCH III on this Titan cluster. In section 2, hardware and software setup are
discussed, including the test cases used. In section 3, measures for the level of
parallel behavior are discussed, together with expected parallel behavior of the
wave model. Much of these two sections are an extension to Tolman (2002a),
which will henceforth be denoted as T02a. In section 4 timing results of the
latest release of WAVEWATCH III (version 2.22) are presented. Although this
version is highly portable, it assumes the presence of a truly parallel file system.
On many clusters, such a file system is not available. In section 5 modifications
to WAVEWATCH III are discussed, which assure that all output passes through

! http://www-unix.mcs.anl.gov/mpi/mpich/
2 http://www.lam-mpi.org/



a designated processor. After the proper code modifications are discussed, the
impact of several approaches on the model economy are discussed. A summary
and conclusions are presented in section 6.



2 Hardware and software setup

To test the performance of WAVEWATCH III on the Rocketcalc Titan T8-240
cluster, the global operational model of NCEP is used. A description of this test
case can be found in T02a. Because of the limited number of processors on the
cluster, it is sufficient to reduce the forecast range of the test from 24 h in T(02a to
6 h in the present study. A copy of the test case, including source code, makefile,
input files and timing scripts can be found on the WAVEWATCH ftp server?,
and is stored with other distribution material for model version 2.22. Because
this test is primarily intended for assessing computational speed on alternative
hardware, only the original model version 2.22 code without output is available
in this way.

The tests considering model version 2.22 (section 4) are preformed without
any model output being generated, other than diagnostic output identifying the
progress of the calculations. The proper treatment of all standard model output,
and its effect on model efficiency is assessed in section 5.

The wave model has been compiled with the pgf90 compiler using the following
compiler options:

-fastsse -tp p7 -byteswapio

The first option enables the SSE instruction set, which vectorizes parts of the
code. Because the code is vectorizable, This speeds up the code by a factor of
2 to 3. Note that this compiler option is not implemented in earlier versions of
the Portland compiler. The second option enables instructions particular for the
Pentium III chip, but was found to have minimal impact. The last option forces
binary I/O to use the big endian format. This is necessary because the input files
are taken directly from NCEP’s IBM systems, which use the big endian IEEE
format for binary files.

The new Intel™ chips include a ‘hyper-threading’ feature (Marr et al., 2002).
Hyperthreading is more generically referred to as ‘simultaneous multi-threading.’
The idea is to keep the many processing units within one processor as busy as
possible. Rather than using complicated optimization code in the compiler and
OS, the OS is tricked into seeing two virtual processors and the on-chip scheduler
is left to the task of keeping the processor busy. With hyper-threading switched
on, the virtual cluster contains 16 instead of 8 processors, and in principle two
parallel processes should be loaded on each individual processor. This overcom-
mitment is important in assessing parallel behavior of a system. In the following
section, a systematic distinction is therefore made between (parallel) processes,
and actual processors.

3 see http://polar.ncep.noaa.gov/waves/wavewatch /wavewatch.html#documentation for

access to ftp server.



Any parallel application requires a loading scheme, i.e., a way to distribute the
parallel processes over actual processors. Most MPI applications use a resource
file in which a list of ‘machines’ is identified, together with the number of processes
(m) to be loaded onto each machine. In the present cluster, each motherboard is
treated as a separate machine with two processors. In the following such a unit
will be called a node.

There are several ways to define the resource list on the present cluster. Each
node could be assigned with m = 1, which would imply that the first process goes
to node 1, the second goes to node 2, and so on until all nodes have one process
assigned. The scheduler then goes back to the top of the list to assign another
process to each node, until all processes are assigned. Because there are two
processors per node, another logical way to distribute processes over nodes is by
setting m = 2. In this case, processes 1 and 2 go to the first node, processes 3 and
4 to the second node, etc. Finally, hyper-threading suggests that m = 4 could
be used. In the timing test, all these options, with and without hyper-threading
have been tried.



3 Parallel measures and prognosis

The basis of assessing or predicting the parallel behavior of a code is Amdahl’s
law. This law will first be discussed in terms of processes, assuming that sufficient
resources are available to assigns no more than one process to each processor (as
in T02a). After this discussion, the effects of sparse resources (more processes
than processors) will be discussed.

Amdahl’s law states the the shortest possible run time for a parallel code with
n processes (f,) can be calculated from the run time of a single process ¢; and
the fraction p of the code that is parallel as

- t n—1
tnz(l—p)tl—i-p—l:tl(l—p ) . (3.1)
n n

The actual run time with n processes (t,) is always larger

~ n—1
tn:to+tn:to+t1(1_p n > s (32)

where %, represent the parallel overhead time, consisting of additional computer
time required for communication between processes. The overhead time also
includes effects of imbalances in the amount of work to be done at each individual
process. From Eq. (3.2), the parallel fraction of the code can be estimated from
measured run times ¢; and ¢,, as

— 1—2) = 1— 3.3

which also requires an assessment of the overhead time ¢,. This overhead time
generally cannot be estimated or measured in an accurate way. Instead the
effective parallel fraction p. can be estimated by assuming that ¢, = 0,

pe= 2 (1 t“) . (3.4)

n—1 _E

Note that ignoring ¢, leads to an overestimation of %, in Eq. (3.3), and hence in
an underestimation of p. Hence, by definition

Pe <P - (3.5)

In Fig. 5 of T02a the effective parallel fraction for WAVEWATCH III on NCEP’s
IBM supercomputer is presented. For the present study, results of up to 8 pro-
cesses are most relevant. For such numbers n, p, ranges from 0.91 to about 0.96.
Deviations from the ideal value of p, ~ 1 are shown to be mostly due to commu-
nication overhead. The latter is furthermore shown to generally diminish with
increasing n.



The implications of Amdahl’s law as discussed above are only valid in cases
where resources are not a limiting factor. In other words, if there are a sufficient
number of processors available to assign no more than one process to each proces-
sor. Particularly in the case of hyper-threading on the present cluster, resources
will be systematically overcommitted, i.e., more than one process will be assigned
to each processor. In this case, load balancing in terms of processes per processor
counteracts Amdahl’s law.

For convenience immediately considering the effective parallel fraction p., the
run time per process for n processes (Z,) becomes [Cf. Eq. (3.1)]

) —1
tn:t1<1—penn ) . (3.6)

For an overcommitted system, however, ¢, does not represent the actual run time
tn. The latter is governed by both ¢, and the number of processes per processor
on the most heavily loaded node of the system ().

N -1
t,=at, =at (1—penn ) , (3.7)

and the corresponding effective parallel fraction of the code is estimated from
measured run times ¢; and ¢,, as

pe= 1 (1— t") . (3.8)

n—1 aty

Note that a > 1, but that « can be a fraction. For instance, when 3 processes
are assigned to a node with 2 processors, o = %

The value of o depends on the configuration of the cluster, and on the loading
scheme used. Let N be the total number of processors on the cluster, M, be the
number of processors per node, and M, the number of nodes (N = M,M,).
Let furthermore n again be the total number of processes, which are assigned
to individual nodes in groups of size m (section 2). The maximum number of

processes per node n, and a then become

Ny = {n + (mM,)} m + min{mod(n, mM,),m} (3.9)
a=n,/M, |, (3.10)

where + denotes integer division.
A final measure for parallel performance as used in T02a is the bulk parallel
efficiency

_ b (3.11)

which represents the ratio of the actual speed up of the code to the ideal speed up
for p = 1. This measure was also defined without considering limited resources.
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Fig. 3.1 : Process load per processor « as a function of the number of pro-

cesses n for several loading schemes (m) for the present cluster with
M, =4, M, =2 and N = 8.

One way of making this measure more meaningful for applications with limited
resource is to replace it by
t

¢= min(n, N)t, (312)

The latter definition will be used here.

In the remainder of this section, the above relations will be used to predict parallel
model behavior on the present cluster.

For the cluster considered here, M, = 4, M, = 2 and N = 8. As discussed
in the previous section, logical choices for m for this system would be 1, 2 or 4.
In Fig. 3.1, « is presented for m ranging from 1 through 4 and for a number of
processes up to n = 25.

For n < 8 and m < 2, « = 1. In these conditions, the system is not over-
committed. For any larger n, the system is always overcommitted. As could be
expected, the smallest load factors « are always found for m = 1. Note that for
the in principle undercommitted cases with n < 8 but m > 2, larger values of «
are found. This points to the obvious load imbalance created by loading more
than M, processes on some nodes, while other nodes are underused.

Figure 3.2 presents expected run times ¢, and bulk parallel efficiencies ( as a
function of m and n as in Fig. 3.1. The different panels correspond to different
(constant) effective parallel fractions pe.

Results for the ideal parallel system (p. = 1, upper panels) identify some fairly
trivial features of (overcommitted) parallel applications. As long as n < N and
m < M, (no more processes than processors in total or per node), ideal parallel
behavior can be achieved (¢ = 1, right panel of Fig. 3.2a). If however, the system
is overcommitted in total (n > N) or per node (m > M,), ideal parallel behavior

7
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Fig. 3.2 : Predicted run time t, [Eq;. (3.7), left panels| and overall parallel
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processes n for several parallel fractions p. (a) p. =1, (b) p. = 0.9, (c)

pe = 0.8. Legend as in Fig. 3.1.



is only achieved in specific conditions, and generally ( < 1. An overcommitted
parallel application shows ideal parallel behavior ( = 1 only if each node is loaded
identically, which implies that

n=0M,m U (n<NNm<M,), (3.13)
where [ is a positive integer number. For instance for m = 1 this requires
n=1-28, 12, 16, 20, 24, ..., for m = 2 it requires n = 1 — 8, 16, 24, ..., for
m = 3 it requires n = 12, 24, ..., and for m = 4 it requires n = 16, 32, ....

For realistic parallel applications, the effective parallel fraction p, is always
less than 1. Examples of projected run times ¢, and bulk parallel efficiencies ¢
are presented in Figs. 3.2b and c for p. = 0.9 and p. = 0.8, respectively. For
overcommitted systems, m = 1 and loadings schemes satisfying Eq. (3.13) still
give the most efficient parallel behavior. However, due to the impact of the
non-parallel contribution in Amdahl’s law, any run time for n > N will always
be larger than the optimum run time for n = N and m < M, (left panels in
Figs. 3.2b and c).

On first inspection, the latter finding might be interpreted as suggesting that
it is never prudent to overcommit the processors. Another argument against
overcommitment is that generally the operating system overhead increases a little
for overcommitted processors due to for instance, frequent swapping of processes
in and out of memory. This would effectively reduce p, with increasing n (or
«). Counterarguments are found in the design of hyper-threading (see section 2),
and in the fact that the WAVEWATCH III code has been shown to display
an increasing parallel behavior (increasing p.) with increasing n (T02a, Fig. 5
and discussion). It is, therefore, still prudent to test the parallel behavior of
WAVEWATCH III for n > N.
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4 WAVEWATCH III version 2.22.

Based on the results of the previous sections, the parallel performance of WAVE-
WATCH III on the Titan cluster is assessed by running a six-hour segment of
NCEP’s global wave model. The timing runs consider 1 through 16 processes n,
loading schemes with m = 1, 2 or 4, and with hyper-threading switched on or
off. For each case, 10 individual runs are made. Actual run times ¢, as a func-
tion of the number of processes n are presented in Fig, 4.1. It should be noted
that run times are measured from within the source code. This implies that the
time estimates do not include overhead for getting a parallel system started (Cf.
T02a). This guarantees that the results are scalable to longer model runs, and
hence makes it feasible to do timing runs with relatively short simulations.

A comparison of Fig. 4.1 with the left panels in Fig. 3.2 shows that the wave
model displays much of the expected timing behavior. Particularly obvious are
the impacts of the loading scheme (m) on the run times, as extensively discussed
in section 3. However, differences can also be observed. Particularly interesting
is the observation that ¢, in Fig. 4.1 does not appear to show the systematic
increase associated with Amdahl’s law for n > 8 as predicted in Fig. 3.2. This can
be explained by the increasing parallel fraction p, with increasing n, as already
shown in T02a, and as discussed in more detail below.

Results with or without hyper-threading (right and left panels of Fig. 4.1,
respectively), show largely the same behavior. Nevertheless, two significant dif-
ferences stand out. First, hyper-threading in general seems to result in more
variability in the timing results, as indicated by the minima and maxima of ¢,
(thin lines). Secondly, timings for the test with hyper-threading seem marginally
slower than without. To illustrate the latter, mean run time results for all six
test cases (thick lines in Fig. 4.1) are gathered in one figure in Fig. 4.2. The lat-
ter figure clearly indicates that run times ¢, with hyper-threading (red lines) are
systematically larger than without (black lines). Both differences between runs
with and without hyper-threading are small, but due to their systematic nature,
there seems to be no justification to switch on hyper-threading for the WAVE-
WATCH IIT model. Therefore, only results obtained without hyper-threading are
discussed in more detail below.

From the timing results t,, the effective parallel fractions p, can be calculated
using Eq. (3.8). The corresponding results are presented in Fig. 4.3. Note that
this figure does not show a clear impact of loading characteristics as found in
the raw run times ¢, in Fig. 4.1. This is due to the fact that the loading char-
acteristics are explicitly accounted for in Eq. (3.8) through a. For n > 4, the
parallel efficiency shows minimal impact of the loading scheme (m), and shows a
systematic increase with n. For n = 5, p, ~ 0.92. For n = 16, p. =~ 0.97. This
compares well with NCEP’s IBM supercomputer, for which the respective values
for p are 0.92 and 0.98 (T02a, Fig. 5).

11
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Significant differences in parallel fractions as a function of m are found only
for n < 4. In this range of n, the results for m = 1 deviate significantly from
the results obtained with the other loading schemes, and show systematically
higher parallel fractions p.. This behavior appears to be a consequence of the
characteristics with n < 4 and m = 1, where the first four processes all are
assigned to a node with two processors. Hence, one processor is dedicated to the
wave model, whereas the other processor on the node provides resources for the
communication software. As soon as the fifth process is assigned to node 1, both
resulting wave model processes are loaded on the two processors of the node, and
have to contend with the communication software for resources. This results in a
reduction of the effective parallel fraction as displayed in the figure. Even though
for n = 5 this happens on only a single node, it will become the bottleneck in
computational effort and hence dictate the run time and p,.

It should be noted that similar behavior with larger parallel fractions p, for
n < 4 was found in T02a for NCEP’s supercomputer. In T02a, however, this is
not attributed to the loading scheme, but to the more efficient communication
within a single node (see T02a for details).

Finally, Fig. 4.4 shows the bulk parallel efficiency ¢ [Eq. (3.12)] as a function
of the number of processes n and the loading scheme (m). Due to the definition
of ¢, it again shows a distinct impact of the loading scheme. If the system is not
overcommitted (n < N and m < 2), the bulk efficiency ¢ > 0.7, with { ~ 0.70
for a fully utilized system (n = N). Based on results of the previous section,
the latter would be expected to correspond to the shortest run times of the code.
However, overcommitting the system with n = 12 and m = 1 results in the
shortest run times and hence a better bulk efficiency ( &~ 0.74. This is confirmed
in Fig. 4.2, although not obvious due to the scaling in this figure.

To facilitate timing comparisons with other hardware, the actual timing results
for m = 1 without hyper-threading are presented in Table 4.1. Extrapolating the
results for the 6 h runs to the run time of the operational model at NCEP (7 days
and 6 h), suggests that this operational model can be run on the Titan cluster in
20 min. This has been validated with several runs (figures not presented here).

14



Table 4.1: Timing results for tests with m = 1 and without hyper-threading.

n tn,min tn,avg tn,max De C

(s) (5) ) O 6

1
~—

1 246.80 247.45 24895 — —

2 130.99 131.68 132.40 0.936 0.940
3 89.46 89.95 90.76 0.955 0.917
4 68.05 6819 68.36 0.966 0.907
5 6511 66.04 67.19 0.916 0.749
6 5411 5532 56.99 0.932 0.745
7 4723 4842 50.74 0.938 0.730
8 4335 4425 45.84 0.938 0.699
9 5426 56.02 59.71 0.955 0.552
10 4835 49.60 51.27 0.963 0.624
11 46.54 4821 50.24 0.957 0.642
12 41.00 42.04 43.80 0.967 0.736
13 5094 5391 57.78 0.965 0.574
14 47.04 4835 49.61 0.972 0.640
15 4452  45.75 4893 0.972 0.676
16 46.32 4717 48.61 0.965 0.656
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5 1I/0 modifications.

5.1 Model version 2.22.

WAVEWATCH III generates diagnostic output identifying the progress of the
model run, and output of raw data for later processing. The diagnostic output
consists of two parts. The actual wave model subroutine (w3wave) maintains a
log file (log.ww3), and the shell around this routine (then main wave model driver
ww3_shel) writes output to standard output (stdout). In the MPI version of the
code the diagnostic output to both stdout and to the file log.ww3 is performed by
the first processor assigned to the parallel job. This implies that the file log.ww3
will be written to the file system as seen by the first processor, and that the
stdout output will be written to the console as seen by the first processor.

On the present cluster setup used here, a single file system residing on the
front end machine is NF'S mounted on all nodes of the cluster, and hence the
file log.ww3 will automatically appear on this file system, when the program is
started from a directory on this file system. Depending on the actual setup of
a cluster, proper capturing of stdout output may require that the parallel job is
started from the actual first node or processor assigned to the parallel job run.

The raw data output of WAVEWATCH III consists of five data types, that
can be controlled independently (with starting time, ending time and increment,
or switched off altogether):

1) Fields of mean wave parameters for the entire spatial grid of the wave
model.

2) Output of full spectral data for selected output points. The spectra are
interpolated from the four surrounding discrete grid points in the spatial
grid.

3) Output along tracks. Full spectral data for grid points surrounding a
user-supplied track in space and time are saved in a file.

4) Restart files. All spectra for all spatial ‘wet’ grid points as well as all
additional data needed to restart the calculation is written to file.

5) Boundary data. Spectra needed as boundary conditions for nested runs
are written to one or more files.

Output types 1 and 2 require data to be gathered from several processors before
the output can be performed. Therefore, these output files are written by a
single processor in version 2.22 of the model. Because the work load on the
higher numbered processors typically is slightly less than on the lower numbered
processors, the field output is controlled by processor n—1, while the point output
is controlled by process n—2, where n again is the number of processes assigned to
the model run. Although not strictly necessary from a logistics perspective, the
output of boundary data (type 5) is also performed by a single process (process

17
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Fig. 5.1 : Wave height field from operational global NWW3 model for the
Indian Ocean for Aug. 11, 2003, 06z, as generated from the properly
written retest file valid for that time (panel a), or from a corrupted file
written using n = 8 (panel b). Color scheme as on web site.

n — 3). As long as the file system from which the program is executed is visible
from all nodes, output types 1, 2 and 5 will therefore generate the expected
output. If the file systems is not shared between nodes, the corresponding output
files will need to be gathered from the appropriate node.

The restart and track output files (type 3 and 4) are direct accesses files where
each processor directly writes spectra to the proper record in the file. The restart
files furthermore contain several fields of parameters on the full spatial grid. The
latter fields are gathered on processor n, and written to the restart file by this
processor. Retaining the integrity of such direct access files when many processes
write to the file at the same time requires a truly parallel file system. A simple
NFS mount of a file system across all nodes of a cluster, as is the case on our
Titan cluster, does not provide a proper parallel file system.

The break down of the integrity of the restart file on a non-parallel file system
is obvious from the model behavior. This is illustrated in Fig. 5.1, which shows
the wave height fields for the Indian Ocean from the operational NWW3 model
at NCEP for a hindcast for Aug. 11, 2003, 06z as it should be (panel a) and
as it is reconstructed from a corrupted restart file valid for the same time. The
corrupt restart file was generated on by a model run with n = 8 processes. Note
that the actual corruption of the file depends on the order in which processors
try to write the file, and hence is not fully reproducible.

The track output files are generated in a similar manner, using a direct access
file containing one full spectrum combined with its environmental data per record.
On a non-parallel file system, the track output file will be corrupted in the same
way the restart file is corrupted.

These problems require changes to th model source code to avoid the gen-
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eration of corrupted direct access files in parallel machines without parallel file
systems, as described in the following section.

5.2 Modifications for non-parallel file systems.

With respect to the restart files, it is desirable to retain the direct access file
structure, because it allows for fast reading of restart data for a model run on
multiple processors, and because it facilitates a change in the number of pro-
cessors between consecutive model runs. The obvious solution to guarantee file
integrity is to have the entire file written by a single process. This process then
needs to receive all necessary data through MPI communications. The actual
data storage structure has a significant impact on how this communication can
most easily be performed.

If the WAVEWATCH IIT model is run in MPI mode using n processes, and
the model grid contains I discrete spectra, each processor only has I, = I +n
or (I +n) + 1 spectra stored in memory. If i is a counter over all spectra I, j
is a counter over the locally stored spectra I;, and k is the rank number of the
processes, ranging from 1 through n, the storage scheme used in WAVEWATCH
III is such that (Tolman, 2002c, page 117)

i=k+(y—-1n , (5.1)
j=1+@G—-1)=n , (5.2)
k=1+mod(i—1,n) . (5.3)

In the restart file, consecutive records contain spectra with consecutive counters
i. Only every n'* spectrum from the full wave model grid are locally stored in
each process with a continuous counter j to save memory.

Considering this, a simple and memory efficient way to generate a data server
for the restart file is to send each local storage array in full to the data server
process. This server process will receive one such array at at time, and write it to
file before processing the data from the next processor. This approach generates
a fairly limited additional usage of memory on the server node, because only a
single storage array from other nodes is needed at each time. The disadvantage
of this method is that the spectra are not written contiguously, but in a ‘striped’
mode; instead of writing spectra (or records) 4, ¢ + 1, i + 2 ...in sequence, the
spectra are written in the order 4, 2+ n, 14+ 2n .... This way of writing is known
to be very inefficient for virtually any file system.

To test the efficiency of writing the restart file, 6h forecast runs were made
with or without writing this file (with all other data output options switched
off). The differences in run time were then used as an estimate of time needed
to generate this file. Test results are presented in Table 5.1. From the timing
results it is obvious that the striped writing takes two orders of magnitude longer
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Table 5.1: Timing estimates of writing a single restart file using different
methods. n is the number of processes, t is the time needed to write the
file.

Method of writing n t
() ()

Single processor code (cont. write) 1 18

Striped writing 8 230

Cont. writing, all data to server 8§ 3.3

Cont. writing, blocked data at server 8§ 3.6

(using 10 blocks)
Cont. writing, blocked and buffered data 8 25

(using 10 blocks, 2 buffers)

than continuous writing, confirming the well known inefficiency of the stripped
writing.

The most simple way to set up a data server process that can write the data
contiguously, is to first gather all spectra to the server, and then write them out in
order. This approach is expected to reduce the time needed to write significantly,
but has the disadvantage that it requires much additional memory for the server
process. As is shown in Table 5.1, this method indeed is much faster than the
striped writing technique, and comes to within a factor of two of the time needed
to write the file without communication (single processor results).

The major disadvantage of the method where all spectra are gathered at a
single processor is the large increase of memory needed. This can be alleviated
by gathering blocks of contiguous data on the target process, and making this
block an order of magnitude smaller than the total spectral storage used. This
blocked storage can then be reused until all data is written. This method proved
to give similar results as the method where all data is gathered before writing
(see Table 5.1), with a modest increase of time to generate the file due to ad-
ditional communication overhead and synchronization between processes. The
time needed to generate the file still is within twice the optimal time for a single
processor model version.

The results in Table 5.1 suggest that about half the time needed to write the
restart file with the blocked method is spent on communication. The necessary
communication time can conceptually be reduced by using buffering techniques,
where one buffer is being filled, while another is being written to disk. This
technique is also fairly easy to implement, once the blocking has been set up
properly. This technique indeed reduces the writing time further (see Table 5.1),
and brings it close to the writing time required for a single processor set up. This
technique removes some of the communication overhead at the cost of a modest
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increase in memory use. The latter can be reduced further my increasing the
number of blocks while leaving the number of buffers unchanged. This blocked
and buffered writing technique will be available as in forthcoming distribution
versions of WAVEWATCH III. The non-server version will also remain available
as it might still be useful if memory usage is an issue.

The track output file was originally written to a direct access file from each
process simultaneously to avoid the need of moving individual spectra to a target
processor. The present experience with the restart file makes it clear that this
concept is not efficient, and that a gathering of all data at a single process before
writing will be more efficient in almost any case. Rather than adding a data server
option to the generation of this output file, the model has been modified to always
process the track output file through process n—4. With this modification, there
is no reason to use a direct access file structure. The raw data file is therefore
converted to a sequential file for both disk usage and writing time economy.
Because this conversion is fairly trivial, it’s effects will not be discussed in any
detail here.

With the above modifications to the restart and track output files, WAVE-
WATCH III can be run on arbitrary clusters. It may nevertheless still be in-
convenient that the different output files are all written by different processes.
In cases where it is preferred that all files are written by the same process to the
same disk pack, an option has been added to the code to have all output routed
through the first process assigned to the model. It should be noted that this re-
moves possible parallelisms in writing different files from different processes (see
T02a). The impact of this option on writing times for files will be assessed in the
following section.

5.3 Timing results.

In this section some timing results for writing output from the wave model are
presented. The amount of data produced by the wave model varies enormously
per application. NCEP’s global wave model will again be used as a representative
case. With this model a one day run is made producing the following output,
similar to the output of the operational global model.

1) Hourly output (24 times) of 10 fields of input and mean wave parameter
on the spatial grid.

2) Hourly output (24 times) of 86 full spectra at selected output locations.

3) No output along tracks.

4) A single restart file (29,792 spectra and two fields of mean wave param-
eters).

5) Hourly output (24 times) of boundary data to three separate files. The
total number of spectra in these files is 284.
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Table 5.2: Time in seconds needed to write different output types for a one
day run as described in the text. Average time based on 99 runs for
each model setup, with std in brackets. All output types processed by
different processes. The run time of the model without output is 158.7
(2.7) s. Producing all data requires 5.8 (4.4) s.

Output type alone with with with with

fields points restart bound.
Fields 1.8 (4.2) 2.1(4.2) 6.1 (4.5) 2.8 (4.5)
Points -0.6 (3.7) | 2.1 (4.2) 2.8 (4.3) -0.8 (3.6)
Restart 2.7(4.2) | 6.1 (4.5) 2.8(4.3) 3.7 (4.2)
Boundary -0.1 (3.8) | 2.8 (4.5) -0.8 (3.6) 3.7 (4.2)

Table 5.3: Like Table 5.2 with all output processed by the first process. The
run time of the model without output is 158.5 (2.9) s. Producing all
data requires 6.6 (3.9) s

Output type alone with with with with
fields points restart  bound.
Fields 1.8 (3.7) 2.6 (4.4) 6.0 (3.9) 2.5 (4.2)
Points -0.6 (4.0) | 2.6 (4.4) 2.2 (4.2) 0.1 (4.8)
Restart 2.1 (4.2) | 6.0 (3.9) 2.2 (4.2) 2.4 (4.3)
Boundary -0.6 (4.1) [ 2.5 (4.2) 0.1 (4.8) 2.4 (4.3)

Note that this model normally runs for 7 days and 6 hours. The amount of data
written and hence the time required to write scales linearly with the run time for
all outputs, except for the restart file. In the operational wave model only one
restart file is written independent of the forecast range of the model. Hence, the
time estimate for writing the restart file as presented here is an absolute time,
whereas all other times are times per day of forecast.

The results of model tests using individual processes for each type of output,
or with having all output processed by the first process are presented in tables 5.2
and 5.3, respectively. All results have been obtained with n = 8 processes and
with the loading scheme with m = 1.

Both Tables clearly indicate that the time required to write the different
output files is of the same order of magnitude as the variability in the run times,
or even significantly smaller. This generally makes the estimated write times
statistically unreliable, and is the reason for using a large number of runs (99) to
make run time estimates. Even without a detailed statistical analysis, it is clear
that there is still a significant sampling error in the timing estimates, for instance
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from comparing the run times of the models without output (which should be
identical), or from the models with only one type of output (which should be
nearly identical). The sampling error also most likely is the main reason for
the negative writing time estimates in the tables. Note that the timing results
presented in Table 5.1 are statistically much more reliable, because the run time
variability is reduced by the shorter forecast period. The corresponding std of
the run time estimates was typically well below 1 s in the latter case.

The fact that the run time estimates are statistically unreliable may be con-
sidered disappointing, because it does not allow for a detailed investigation of the
times needed to generate the output. However, one of the reasons why the results
are unreliable is due to a positive result from these tables: generally, write times
required to generate output files from the wave model are insignificant, adding
less than 5% to the run times. Note that this was not necessarily the case for the
restart files before the data server options were implemented (see Table 5.1).

Even with the sampling variability, some observations can be made consid-
ering times needed to write different types of output. First, the restart file is
the biggest file written (72.5 Mb), followed by the field output file (41.5 Mb),
the boundary data files (three files, in total 16.6 Mb) and the point output file
(5.3 Mb). The two biggest files require the larges writing times, the smallest two
‘disappear in the noise’. Note that a track output files would typically generate
data amounts between the boundary data and point output files, and thus is also
expected to result in inconsequential write times. Differences between the table
are too small to have statistical significance, and will therefore not be discussed.

It should be noted that the data server version of the restart file might also be
beneficial for use on parallel file systems. This has been tested briefly by applying
the test of Table 5.1 on NCEP’s IBM supercomputer, also using n = 8 processors.
The computational run time on this system is about 41s, comparable to the run
time for 8 processes on the present cluster. In the non-server mode, the writing
of the restart file takes 8.6s, and in the data server model it takes 2.5s. Hence,
the data server mode of the model may also be useful for parallel file systems.
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6 Summary and conclusions

In the present study, the WAVEWATCH III model has been installed on a Linux
based Titan cluster, consisting of 8 Intel Xeon processors. In section 4 it is shown
that this model displays excellent scaling behavior on this cluster, comparable to
the scaling behavior of this model on an IBM super computer (see Tolman, 2002a).
The timing result indicate that the model benefits moderately from overloading
the system by running 12 processes equally distributed over the 8 processors.
In this case, the detrimental impacts of Amdahl’s law, and the overloading of
individual processors is offset by the increased parallel behavior of the model for
increasing numbers of processes. It is also shown that the present model does not
benefit from the hyper threading option on the Intel chips.

The presently distributed version of WAVEWATCH III (version 2.22, Tolman,
2002c) requires a parallel file system to assure the integrity of raw data output
files for restarts and for output along tracks, as discussed in section 5. The
latter output is modified to always be processed by a dedicated process, hence
removing the need of a parallel file system for this output file. For the restart
files, the parallel file system options are retained, based on its memory efficiency.
Alternative data server methods are also made available, that produce proper
restart files on non-parallel file systems. For the data server version of the model,
the time required to write output data proved inconsequential compared to the
computational time required by the model. The data server version for writing
the restart file might also by useful on parallel file systems, because the writing
technique utilized is inherently more efficient than in the original approach.
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