
A neural network technique to improve
computational efficiency of numerical oceanic models q

Vladimir M. Krasnopolsky *,1, Dmitry V. Chalikov 2, Hendrik L. Tolman *,1

Ocean Modeling Branch, Environmental Modeling Center, National Centers for Environmental Prediction, NWS,

NOAA, 5200 Auth Road, Camp Springs, MD 20746, USA

Abstract

A new generic approach to improve computational efficiency of certain processes in numerical envi-
ronmental models is formulated. This approach is based on the application of neural network (NN)
techniques. It can be used to accelerate the calculations and improve the accuracy of the parameterizations
of several types of physical processes which generally require computations involving complex mathe-
matical expressions, including differential and integral equations, rules, restrictions and highly nonlinear
empirical relations based on physical or statistical models. It is shown that, from a mathematical point of
view, such parameterizations can usually be considered as continuous mappings (continuous dependencies
between two vectors). It is also shown that NNs are a generic tool for fast and accurate approximation of
continuous mappings and, therefore, can be used to replace primary parameterization algorithms. In ad-
dition to fast and accurate approximation of the primary parameterization, NN also provides the entire
Jacobian for very little computation cost.
Three successful particular applications of the NN approach are presented here: (1) a NN approximation

of the UNESCO equation of state of the seawater (density of the seawater); (2) an inversion of this equation
(salinity of the seawater); and (3) a NN approximation for the nonlinear wave–wave interaction. The first
application has been implemented in the National Centers for Environmental Prediction multi-scale oce-
anic forecast system, and the second one is being developed for wind wave models.
The NN approach introduced in this paper can provide numerically efficient solutions to a wide range of

problems in environmental numerical models where lengthy, complicated calculations, which describe
physical processes, must be repeated frequently. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Any atmospheric or oceanic numerical model is based on a set of prognostic and diagnostic
differential equations together with additional equations required to obtain a mathemati-
cally closed system. Such a system, in principle, can then be solved to predict the evolution of the
environment in time if the initial conditions and any required external boundary conditions
are prescribed. Even though the forecast problem may now be considered solvable in a theoret-
ical sense, in the real world of running operational forecast models, it is necessary to deal
with practical aspects of available computational resources and minimize the computer time
taken to produce a forecast by introducing certain simplifications in the system for the following
reasons.
The numerical model contains coefficients that appear in the dynamical equations, such as

turbulence coefficients representing the unresolvable subgrid scale processes, which need to be
parameterized in terms of the dependent variables. Also, implicitly contained in the system are
processes that deal with model physics such as radiation, convection, etc., which need to be pa-
rameterized. Accurate treatments of such parameterizations generally require computations in-
volving complex mathematical expressions, which may include differential and integral equations,
rules, restrictions, highly nonlinear empirical expressions, etc. that are developed based on
physical or statistical models. The complex mathematical formulations of these processes require
considerable computational resource.
For example, a spectral atmospheric model with a well-developed description of physics

and subgrid scale parameterizations may spend up to 70% of calculation time for simulating
these processes (Estrade et al., 2001). The long-wave radiative code requires >10% of the com-
puting time in the European Center for Medium-Range Weather Forecast general circula-
tion model (Chevallier et al., 1998) and in the National Centers for Environmental Prediction
(NCEP) global model. This percentage would be considerably larger if the long-wave radiative
variables in both models were updated every time step (in NCEP model they are updated every 3 h
only).
In modern high-resolution ocean models the estimation of the full UNESCO equation of state

to compute the seawater density, represented by an empirically derived highly nonlinear equation
relating density to pressure, salinity, and temperature, takes a very significant amount of the total
computational effort. In addition, most forecast models include data assimilation procedures as
an integral part of the forecast system to improve the initial conditions of the model. When
dealing with ocean models, most often the data assimilation consists of assimilating surface and
subsurface temperature observations to correct the model’s thermal field. This temperature cor-
rection automatically makes it necessary to adjust the salinity field in the ocean model in order to
avoid gravitational instabilities in the water column. This requires inverting the complicated
oceanic equation of state, which makes the computational effort even more time consuming than
the forward problem of computing the density itself. Another example where intensive compu-
tational is needed in a forecast model is the calculation of the land surface temperature using a set
of equations describing the atmospheric boundary layer and physical processes in the soil. Yet
another example of intensive computational problem in forecast models is the wind wave fore-
casting problem in which an exact calculation of the nonlinear wave–wave interactions using the
formulation of Hasselmann (1963) takes a prohibitively long time.
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In this paper, we use the term ‘‘parameterization’’ for convenience to represent in general all the
computationally expensive and complex mathematical formulations involved in forecast systems,
a few examples of which have been mentioned above.
In view of the constraints imposed on the available computer resources, the calculation time

allowed for each parameterization is strictly limited in most operational forecast models. Hence,
very often it is found necessary to use simplified forms of these complex representations in car-
rying out the time integrations in a forecast model, thereby sacrificing accuracy of forecasts to a
certain extent. For example, the nonlinear wave interactions in a wave forecast model are replaced
by a simplified discrete interaction approximation (DIA) (see Hasselmann et al., 1985). Similarly,
simplified fast parameterizations of physics are used in many parts of atmospheric and oceanic
models. In most of these cases, accurate physical models have been developed, but they cannot be
used because they are too expensive computationally. Often simplified (even oversimplified due to
computational efficiency requirements) parameterizations are obtained, for example, by neglect-
ing higher order terms of perturbation theory, by using empirical approximations, or simply by
neglecting the effects, which complicate the calculations. It is common in many parameterization
schemes that the number of input and output variables is relatively small, whereas the volume of
internal calculations is large. Hence, most often the specific parameterization is a result of a
compromise between accuracy and computational efficiency with an (sometimes) unpredictable
effect on the forecast.
Improvements in forecast modeling can be achieved not only by improving the representation

of such parameterizations as our understanding of the underlying physical processes increases but
also by improving our ability to compute these parameterizations accurately within the con-
straints imposed by the available computer resources.
In this paper we present some of the problems dealing with physical parameterizations and

their computations from a different (formal mathematical) point of view, namely that of im-
proving the computational efficiency of available algorithms. We propose a generic approach,
which is based on developing fast and accurate parameterizations of physics by approximating
solutions of exact physical models using neural networks (NNs). From this formal point of view
an exact (best known) physical model representing a physical process performs a continuous (or
almost continuous) conversion of an input vector of parameters, X ¼ fx1; x2; . . . ; xng, X 2 Rn into
an output vector of parameters, Y ¼ fy1; y2; . . . ; yng, Y 2 Rm. A worst scenario includes a con-
tinuous dependence accompanied by several discontinuities. Thus, each output parameter yi is in
general a continuous function of multiple inputs variables x1; x2; . . . ; xn (input vector X). Sym-
bolically this input–output dependence can be written as

Y ¼ F ðX Þ; X 2 Rn; Y 2 Rm: ð1aÞ

If X and Y are related through a cause and effect principle, the forward parameterization, Eq. (1a),
can be derived from first principles. If the inverse dependence

X ¼ f ðY Þ; X 2 Rn; Y 2 Rm ð1bÞ

is required in a numerical model, the inverse problem should be solved, which implies that Eq. (1a)
should be inverted. A solution of the inverse problem (1b) or an inverse parameterization pro-
vides each output parameter xi as a continuous function of multiple input variables y1; y2; . . . ; yn
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(vector Y is an input vector now). Forward, Eq. (1a), and inverse, Eq. (1b), parameterizations
represent the same mathematical object—a continuous mapping which is a continuous relation-
ship between two vectors. Usually these input/output relationships are highly complex and
nonlinear, but continuous (or have a finite number of discontinuities), for physical processes taken
into account in atmospheric, oceanic, and wave models. Different components yi of the output
vector Y may demonstrate different types of nonlinear dependencies on the input vector X.
Moreover, for the same component yi, the type of nonlinear behavior may be different in different
parts of the X domain. When we approximate (1a) or (1b), we also usually do not know in ad-
vance what kind of nonlinearity to expect; therefore, we need a flexible, self-adjustable approach
that can accommodate various types of nonlinear behavior and represent a broad class of non-
linear mappings. The NN technique is such a generic mathematical tool (see Appendix A). Hence,
if exact solutions to these complex relationships are calculated, however expensive the compu-
tational efforts may be, these solutions can be used by the NNs to produce fast and accurate
approximations for continuous mappings. In this approach the costly exact calculation of the
physics needs to be performed only once and ‘‘off line’’ (outside the model) to enable the devel-
opment of the fast and accurate approximation. After that only this fast and accurate approxi-
mation will be used to calculate the physics (coefficients of differential equations) ‘‘on line’’ in a
numerical model during the integration process.
There are many different types of the NNs (e.g., Haykin, 1994). The multi-layer perceptron

(MLP) is one, which is well suited for approximation of continuous mappings (Funahashi, 1989).
In our applications we used only this type of the NNs, and when we use the term NN in this paper
we mean the MLP. Basic ideas of the NN technique (MLP) are introduced in Appendix A. Here,
several main properties of NNs are listed which make them a very suitable generic tool for
nonlinear mapping (and, therefore, for fast parameterization of physics). Some of these properties
are introduced in Appendix A; others are described in the literature (e.g., Bishop, 1995; Haykin,
1994; Ripley, 1996).

• NNs are able to accurately approximate any continuous nonlinear mapping (even with finite
number of discontinuities).

• While training the NN is often time consuming, its application is not. After the training is fin-
ished (it is usually performed only once), each application of the trained NN is an estimation of
(A.3) with known weights and biases, which is practically instantaneous (several tens of floating
point additions and multiplications).

• NNs are analytically differentiable, so the calculation of entire Jacobian matrix is cheap.
• NNs are well suited for parallel processing (Chen, 1996) (all neurons in the same layer are com-
pletely independent and can be evaluated simultaneously).

In their pioneering works Chevallier et al. (1998, 2000) considered a particular case of the
generic problem formulated above—the long-wave atmospheric radiation—and applied a NN
technique to solve this specific problem. In this paper we generalize their approach and apply it to
solve several problems in oceanic and wave numerical models. In Section 2 we present two
(forward and inverse) parameterizations for oceanic models and in Section 3 a parameterization
for wind wave models developed using NNs, and, in Section 4, formulate conclusions. In Ap-
pendix A we demonstrate that NNs are a generic, fast, and accurate tool for approximating any
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continuous mapping, which allows using NNs for efficient calculation of the parameterizations of
physics used in numerical models.

2. Oceanic applications: neural networks for efficient calculation of sea water density or salinity from
the UNESCO equation of state

Here we apply a NN technique to two related problems in the fast calculation of physics in
oceanic modeling and data assimilation. (i) In most ocean models, the UNESCO International
Equation of State (UES) for seawater (e.g., UNESCO, 1981) is used for the calculation of the
density at each point of a three-dimensional (3D) grid using a relatively small time step. The
frequency of updating the density depends on specifics of the model. For example, if the model
explicitly describes external waves, the time step for recalculating the density should not be more
than several times larger than the global time step. Hence, for high-resolution models, the solution
of this equation consumes a significant part of the overall computation time. (ii) In the data
assimilation process, assimilation of temperature alone, without making corresponding adjust-
ments to salinity, in ocean models, which employ the full equation of state, can lead to problems
of gravitational instabilities (Woodgate, 1998; Chalikov et al., 1998). To adjust the salinity, we
need to calculate the salinity from UES as a function of temperature, density and depth (or
pressure), i.e. solve an inverse problem in many points. Numerical inversion of the UES is an
iterative procedure, which can consume several orders of magnitude more time than solving of the
UES itself.
The UES for seawater gives the following expression for the density anomaly dq (kgm

�3) as
described by Fofonoff and Millard (1983),

dqðT ; S; P Þ ¼ qðT ; S; P Þ � 1000;

qðT ; S; P Þ ¼ qðT ; S; 0Þ
1� P

KðT ;S;P Þ
;

ð2Þ

where q is the density of seawater in kgm�3, T is the temperature in �C, S is the salinity in
practical salinity units (psu), P is the pressure, and KðT ; S; P Þ is a bulk modulus.
The UES (2) is empirically based and given over a 3D domain D ¼ f�2 < T < 40 �C,

0 < S < 40 psu, and 0<P<10,000 decibarsg. This domain represents all possible combinations of
T, S, and P, which are globally encountered. Mathematically, the functions qðT ; S; 0Þ and
KðT ; S; P Þ are represented by multi-dimensional polynomials and, as a result, the density (2) is a
ratio of two 3D polynomials which contain more than 40 parameters.
The UES has two major drawbacks when it is applied in the context of ocean modelling. First is

its cumbersome form. In ocean models the UES is used for calculating the density at each point of
a 3D grid for each time step. For modern high-resolution short term forecast models, like the new
NCEP multi-scale ocean forecast system (MSOFS), which uses short time integration steps to
avoid instabilities due to internal waves, the solution of the UES consumes a significant part (up
to 40%) of the overall computation time. Second, it is not a simple matter using the UES to obtain
solutions for salinity, since this solution represents an inverse dependence.
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The UES determines the density field from observed temperature, salinity, and pressure to
within a standard error of approximately 0.009 kgm�3; however, due to variations in the com-
position of dissolved salts, the uncertainty in the density of natural seawater is of the order of 0.05
kgm�3 (Apel, 1987). The UES is usually applied in numerical models in combination with an
approximate hydrostatic pressure-depth relationship of the following form:

P ¼ g
Z 0

�H
qðT ; S; ZÞdZ; ð3Þ

where g is the acceleration of gravity. This linear approximation neglects the dependence of g on
latitude and the nonlinear terms in the dependence of Z on P (Fofonoff and Millard, 1983) which
introduce additional uncertainties in the calculation of qðT ; S; ZÞ of about 0.05–0.1 kgm�3.
Taking these uncertainties into account, it does not make sense to use parameterization with

higher accuracy in numerical ocean models if accuracy and computing time grow up together.
This is why the accuracy of about 0.1 kgm�3 was selected as the expected accuracy for the NN
parameterization. The accuracy of the NN parameterization for salinity expressed in terms of
density was also expected to be of about 0.1 kgm�3.
The UES defines two relationships (second relationship for salinity through inversion),

q ¼ qðT ; S;ZÞ; ð4aÞ
S ¼ SðT ;q;ZÞ; ð4bÞ

which are continuous mappings (degenerated mappings because one-dimensional (1D) vectors are
on the left). The NN technique can be applied to approximate these mappings (see Appendix A
and also Krasnopolsky et al., 2000). To create a training set for these NN parameterizations in the
3D domain D, 4000 points (Ti; Si; Zi) were generated on a grid. The UES was used to estimate the
density of seawater, qi, for each point. This simulated data set fqi; Ti; Si; Zig was used in order to
train the NNs to extract density and salinity. NNs with three nonlinear neurons in one hidden
layer and one linear neuron in the output layers were selected for training. The Broyden–Fletcher–
Goldfarb–Shanno algorithm (Dennis and Schnabel, 1983) with the Bayesian regularization
(MacKay, 1992) was used for training. No pruning was performed because of the minimal size of
the NNs. Two NN parameterizations were obtained (see Fig. 1):

q ¼ qNNðT ; S; ZÞ; ð5aÞ
S ¼ SNNðT ; q; ZÞ; ð5bÞ

where both qNN and SNN are expressed by Eq. (A.3).
Derivatives (Jacobian matrix) shown in Fig. 1 as additional NN outputs are not actual outputs,

which are trained during the NN training; they are calculated analytically through direct differ-
entiating Eq. (A.4). The NN parameterization (5a) for the density is about two times faster then
the UES. The calculation of the Jacobian matrix with the NN parameterization requires an ad-
ditional time, which is about 70% of time required for the calculation of density. Of course, these
estimates are approximate; they depend on many parameters like programming language, com-
piler, optimization, computer, etc. The NN parameterization (5b) for the salinity is several
hundred times faster than an iterative numerical inversion of the UES; the time required for the
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numerical inversion of the UES (rate of conversion of the iterations) varies significantly depending
on inversion algorithm and on the choice of the initial approximation for the salinity.
To evaluate the accuracy of the NN approximation (5a) and (5b), 16,000 points were generated

on a grid, which does not overlap with the training grid, within the domain D. The density of sea
water calculated from the UES (2) was compared to that calculated from the NN, qNNðT ; S; ZÞ,
using (5a). These comparisons are presented in Tables 1 and 2. Table 1 shows statistics for the
density anomaly, d ¼ qðT ; S; ZÞ � 1000, for seawater, generated by the UES (2) and by the NN
(5a). Table 2 shows several statistical measures of the differences between the UES and the NN
estimates for density. In terms of the bias and the RMS differences, the NN results for density
clearly satisfy the criterion mentioned above; both the bias and the RMS values do not exceed the
uncertainties indicated there and are less than 0.1 kgm�3.
Fig. 2 shows the difference, qUES � qNN, as a function of salinity and temperature at the surface

layer of the ocean. This figure demonstrates that maximum errors occur at the combination of
these parameters (low temperature and low salinity), which are never encountered in the ocean.

Fig. 1. Schematic representation of NN parameterizations for the density and salinity of seawater.

Table 1

Statistics for the density anomaly d ¼ qðT ; S; ZÞ � 1000
Expression Mind Maxd Meand rd

UES (2) �6.02 74.32 31.04 16.33

NN (5a) �5.98 74.38 31.04 16.33

Minimum, maximum, and mean values together with the standard deviations rd are shown (kgm
�3).

Table 2

Minimum, maximum, and mean differences (i.e., the biases), e ¼ qNN � qUES, and the RMS differences, all expressed in
kgm�3

Min e Max e Bias RMS

�0.25 0.12 0.00 0.04
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To evaluate the errors in using the NN approach to estimate the salinity, we used the same
16,000 points ðqi; Ti; Si;ZiÞ which were used for estimating the density. Initially, the NN for SNN
(5b) was applied to calculate a new salinity, si, using the corresponding values ðTi; qi; ZiÞ. Then the
differences ðSi � siÞ were utilized to estimate the accuracy of the NN-derived salinities (first line in
Table 3). To further evaluate the quality of the NN-derived salinities, the UES was applied again,
this time to the triad ðTi; si; ZiÞ to recalculate the density of seawater, q0

i. If the NN-obtained values
for salinity were perfect, then the density, q0

i, would be equal to qi. The differences between these
two values, ðqi � q0

iÞ, were then used to further estimate the accuracy of the salinity-trained NN in
terms of the density (second line in Table 3).
Table 3 shows that the NN estimates of salinity (5b) have an RMS error of 0.1 psu. In terms of

the related error in density, this accuracy corresponds to an RMS error of 0.08 kgm�3, which
again does not exceed the uncertainties discussed above.
A substantial additional acceleration of calculations may be achieved by use of differential

increments of density, temperature, and salinity to substantially reduce the computational burden
via replacement of the calculations of density per se by calculations of its total differential

Dq ¼ oq
oT

DT þ oq
oS

DS; ð6Þ

Fig. 2. Error of the NN-derived density (qNN � qUES in kgm
�3) as a function of the temperature T and salinity S at the

ocean surface (z ¼ 0 m).

Table 3

Accuracies of the salinities estimated by the NN in terms of salinity and density

Units Min error Max error Mean error RMS error

psu �0.33 0.85 0.00 0.10

kgm�3 �0.27 0.71 0.00 0.08

Minimum, maximum, and mean errors together with the RMS errors are presented.
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where DT and DS are increments of T and S, oq=oT , and oq=oS are functions of T, S, and z.
Hence, we extend our approach to estimate these quantities also. In this approach, after the
density and its derivatives are calculated, the Eq. (6) is used during several (usually several tens)
steps of integration to estimate the new density. Then the densities and its derivatives are recal-
culated, using the UES or NN approximation of the UES, to update the estimated values ob-
tained using (6). Because of these periodical updates and due to the fact that the increments DT
and DS are usually small, accuracy requirements for derivatives in this case are not stringent. As a
result, the derivatives in (6) can be represented at fixed depths by low-order NN approximation.
The derivatives oq=oT and oq=oS (and oq=oz) can be accurately calculated from the NN qNN, Eq.
(5a), using Eq. (A.4) (see also Fig. 1). The relative errors in oq=oT do not exceed 5% and the errors
in oq=oS do not exceed 1%. Eq. (6) can be reduced to

Dq ¼ oqNN
oT

DT þ oqNN
oS

DS: ð7Þ

The estimation of the density using Eq. (6) requires five calculations of the UES (in that case the
Jacobians are computed be centered finite differences). The estimation of the density using Eq. (7)
requires one estimate of the NN (4a) and its derivatives, which is about five times faster than (6).
If oqNN=oz is also used in (7) for vertical integration, the gain in the speed of calculations due to
the use of the NN reaches about seven times.
This use of NN and its derivatives has been shown to accelerate model performance signifi-

cantly. Table 4 estimates an absolute accuracy in calculating Dq from Eq. (7), as compared with
Dq calculated using UES with the same DT and DS. In this case bias is negligible and the
RMSE < 0:5%.
Based on results discussed above, we accepted the following scheme for calculating the density

in our MSOFS at NCEP. At the beginning of each run of the model, the density and its deriv-
atives are calculated using the NN approximation. Then for each time step assigned for updating
the density, the density increment values are calculated using Eq. (7), with the initial density and
its derivatives kept unchanged. The frequency of updating (recalculating) the density and its
derivatives depends on specific properties of the model and region to which the model is applied.
For the global version of the NCEP ocean model with the horizontal resolution of about 80 km
the density and its derivatives are updated once in every 90 time integration steps of the external
mode (i.e., every 180 min). Fig. 3 shows that using Eq. (7) the calculations may be accelerated
about 10 times with the error in the density calculations not exceeding the natural uncertainty of
about 0.1 kgm�3. The figure presents results of calculations performed with the MSOFS at NCEP
when the number of integration steps between updated of the density and its derivatives in (7)
varied. The computational expense of calculating density has decreased by an order of magnitude
as a result of using the NN approximation in combination with Eq. (7).

Table 4

Mean, standard deviation (r), and mean differences (i.e., biases) and the standard deviations (SD) for the differences for
Dq calculated using Eqs. (7) and (6) with DT ¼ 0:1 and DS ¼ 0:1

Mean r Bias SD

Dq 0.052 0.012 �0.00001 0.0002
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3. Wave application: a neural network approximation for nonlinear interactions in wind wave models

Ocean wind wave modeling for hindcast and forecast purposes has been at the center of interest
for many decades. Numerical prediction models are generally based on a form of the spectral
energy or action balance equation

DF
Dt

¼ Sin þ Snl þ Sds þ Ssw; ð8Þ

where F is the spectrum, Sin is the input source term, Snl is the nonlinear interaction source term,
Sds is the dissipation or ‘whitecapping’ source term, and Ssw represents additional shallow water
source terms. The JONSWAP study (Hasselmann et al., 1973) identified the active role of the
nonlinear interactions in wave growth. The SWAMP study (SWAMP Group, 1985) then iden-
tified the need for explicit modeling of Snl in wave models. State-of-the-art or so-called third-
generation wave models therefore explicitly model this source term.
In its full form (e.g., Hasselmann and Hasselmann, 1985), the calculation of the interactions Snl

requires the integration of a six-dimensional Bolzmann integral:

Snlð~kk4Þ ¼ T 
 F ð~kkÞ ¼ x4

Z
Gð~kk1;~kk2;~kk3;~kk4Þ � dð~kk1 þ~kk2 �~kk3 �~kk4Þ � dðx1 þ x2 � x3 � x4Þ

� ½n1 � n3 � ðn4 � n2Þ þ n2 � n4 � ðn3 � n1Þ�d~kk1 d~kk2 d~kk3;

nð~kkÞ ¼ F ð~kkÞ
x

; x2 ¼ g � k � tanhðkhÞ;

ð9Þ

where the complicated coupling coefficient G contains moving singularities (Hasselmann, 1963).
This integration requires roughly 103–104 times more computational effort than all other aspects
of the wave model combined. Present operational constraints require that the computational
effort for the estimation of Snl should be of the same order of magnitude as the remainder of the
wave model. This requirement was met with the development of the DIA (Hasselmann et al.,

Fig. 3. Error in the density as a function of computational gain when Eq. (7) is used for density calculations in the

MSOFS at NCEP.
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1985). The development of the DIA allowed for the successful development of the first third-
generation wave model WAM (WAMDI Group, 1988; Komen et al., 1994). More than a decade
of experience with the WAM model and its derivatives has identified shortcomings of the DIA.
The DIA tends to unrealistically increase the directional width of spectra, has a systematic spu-
rious impact on the shape of the spectrum near the spectral peak frequency, and has a much too
strong signature at high frequencies. In present third-generation wave models, these deficiencies
can be countered at least in part by the dissipation source term Sds, which is generally used for
tuning the energy balance in the Eq. (8). Although this approach gives good results, it is coun-
terproductive, because it prohibits development of dissipation source terms based on solid
physical considerations. With our increased understanding in the physics of wave generation and
dissipation, this becomes an even bigger obstacle impeding further development of third-gener-
ation wave models.
Considering the above, it is of crucial importance for the development of third-generation wave

models to develop an economical yet accurate approximation for Snl. Here, we explore a Neural
Network Interaction Approximation (NNIA) to achieve this goal (see also Krasnopolsky et al.,
2001). NNs can be applied here because the nonlinear interaction (9) is essentially a nonlinear
mapping (symbolically represented in Eq. (9) by T) which relates two vectors (two-dimensional
(2D) fields in this case). Thus, the nonlinear interaction source term can be considered as a
nonlinear mapping between a spectrum F and a source term Snl,

Snl ¼ T ðF Þ; ð10Þ
where T is the exact nonlinear operator given by the full Bolzmann interaction integral (9)
(Hasselmann and Hasselmann, 1985; Resio and Perrie, 1991). Discretization of S and F (as is
necessary in any numerical approach) reduces (10) to continuous mapping of two vectors of finite
dimensions. Modern high-resolution wind wave models use discretization on a 2D grid which
leads to dimensions of S and F vectors of order of N > 600 (Tolman, 1999). It seems unreasonable
to develop a NN approximation of such a high dimensionality (more than 600 inputs and out-
puts). Moreover, such a NN will be grid dependent.
In order to reduce the dimensionality of the NN and convert the mapping (10) to a continuous

mapping of two finite vectors independent on the actual spectral discretization, the spectrum F
and source function Snl are expanded using systems of 2D functions each of which (Ui andWq)
creates a complete and orthogonal 2D basis

F �
Xn
i¼1

xiUi; Snl �
Xm
q¼1

yqWq; ð11Þ

where for xi and yq we have

xi ¼
Z Z

FUi; yq ¼
Z Z

SnlWq; ð12Þ

where the double integral identifies integration over the spectral space. Because both sets of basis
functions fUigi¼1;...;n and fWqgq¼1;...;m are complete, increasing n and m in (11) improves the ac-
curacy of approximation, and any spectrum F and source function Snl can be approximated by
(11) with a required accuracy. Substituting (11) into Eq. (10) we can get

Y ¼ T ðX Þ ð13Þ
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which represents a continuous mapping of the finite vectors X 2 Rn and Y 2 Rm, and where T still
represents the full nonlinear interaction operator. As described in Appendix A, this operator can
be approximated with a NN with n inputs and m outputs and k neurons in the hidden layer

Y ¼ TNNðX Þ: ð14Þ
The accuracy of this approximation (TNN) is determined by k, and can generally be improved by
increasing k (see Appendix A).
To train the NN approximation TNN of T, a training set has to be created that consists of pairs

of vectors X and Y. To create this training set, a representative set of spectra Fp has to be gen-
erated with corresponding (exact) interactions Snl;p using Eq. (9). For each pair ðF ; SnlÞp, the
corresponding vectors ðX ; Y Þp are determined using Eq. (12). These pairs of vectors are then used
to train the NN to obtain TNN. After TNN has been obtained by training, the resulting NNIA
algorithm consists of three steps:

• Decompose the input spectrum, F, by applying Eq. (12) to calculate X.
• Estimate Y from X using Eq. (14).
• Compose the output source function, Snl, from Y using Eq. (11).

A graphical representation of the NNIA algorithm is shown in Fig. 4.
The above describes the general procedure for developing an NNIA. Development of an actual

NNIA requires the following steps:

• Select basis functions Ui and Wq and the number of each ðn;mÞ.
• Design a NN topology (number of neurons k).
• Construct a representative training set.
• Select training strategies.

The first three points all have a significant impact on both accuracy and economy of a NNIA.
Unfortunately, there is no pre-defined way to tackle these issues. It is therefore unavoidable that

Fig. 4. Graphical representation of the NNIA algorithm.
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the development of a NNIA involves much iteration. The first requirement for a NNIA to be
potentially useful in operational wave modeling is that the exact interactions Snl are closely re-
produced for computational costs comparable to that of the DIA. The following shows the po-
tential of this approach with the design of a simple ad-hoc NNIA.
To address the basic feasibility of a NNIA, we have considered a NNIA to estimate the

nonlinear interactions Snlðf ; hÞ, as a function of frequency f and direction from the corre-
sponding spectrum F ðf ; hÞ. We also consider deep water only here. To train and test this NNIA,
we used a set of about 20,000 simulated realistic spectra for F ðf ; hÞ, and the corresponding exact
estimates of Snlðf ; hÞ (Van Veldder et al., 2000). Simulation has been performed using a gen-
erator that calculated a spectral function as a composition of several Pierson–Moskowitz spectra
for different peak frequencies, where each peak is oriented randomly in [0,2p] interval. Com-
parison of simulated spectra with spectra simulated by the WAVEWATCH model (Tolman,
1999; Tolman and Chalikov, 1996) shows that this approach allowed us to simulate reasonably
realistic and complicated spectra describing a broad range of wave systems. Spectra with four
peaks were used in calculations below. Separate data sets have been generated for training and
validation.
As is common in parametric spectral descriptions, we choose separable basis functions where

frequency and angular dependence are separated. For Ui this implies

Uiðf ; hÞ ) Uij ¼ /f ;iðf Þ/h;jðhÞ: ð15Þ

A similar separation is used for Wq. Considering the strongly suppressed behavior of F and Snl
for f ! 0, and the exponentially decreasing asymptotic behavior for f ! 1, generalized La-
guerre’s polynomials (Abramowitz and Stegun, 1964) are used to define uf and wf . Considering
that no directional preferences exist in F and Snl, Fourier decomposition is used for uh and wh. The
number of base functions is chosen to be n ¼ 51 and m ¼ 64 to keep the accuracy of approxi-
mation for F on average better than 2% and for Snl—better than 5–6%. A NN with n ¼ 51 inputs,
k ¼ 30 nonlinear neurons in one hidden layer and m ¼ 64 nonlinear neurons in the output layer
was selected, which allows a satisfactory NN approximation of the mapping (13) using (14).
Table 5 compares three important statistics for the source function RMS errors (with respect to

exact solution) calculated using DIA and NNIA for 10,000 spectra (independent validation set).
The NNIA is nearly twice as accurate as DIA.
Fig. 5 shows mean RMSE as functions of the frequency f (left) and the angle h (right). It also

illustrates the improvement of the NNIA accuracy by increasing the number of neurons, k, in the
hidden layer from 20 to 30. Numbers in Table 5 correspond to a NNIA with 30 neurons in the
hidden layer (51:30:64). Fig. 6 shows 1D integrated spectra.

Table 5

RMSE statistics for 10,000 Snl

Mean RMSE rRMSE Max RMSE

DIA 0.0133 0.0111 0.104

NNIA 0.0068 0.0063 0.065
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The results in Fig. 6 are fairly representative for the validation data set. In general, the NNIA
reproduces the exact Snl accurately. Even when spurious oscillations are present in the DIA

Fig. 5. RMSE as functions of frequency f and angle (averaged over entire test set). Dashed line—error of approxi-

mation (lower bound for all other errors), solid line—DIA, line with squares—NNIA (n ¼ 51:k ¼ 20:m ¼ 64), and line

with triangles—NNIA (51:30:64).

Fig. 6. Three pairs (one row in the figure corresponds to a pair). Each pair shows the source function Snlðf Þ integrated
over h as function of frequency (left column), and the source functions SnlðhÞ integrated over f as function of angle (right
column) from the validation data set. Thick solid curves correspond to the exact Snl. Dashed curves correspond to DIA
of Snl. Curves with triangles correspond to the NNIA estimate of Snl. Numbers inside the panels show relative errors of
DIA and NNIA (in %) with respect to the exact solution.
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spectrum (e.g., dashed lines in middle and lower panel on the left), the NNIA shows no such
behavior and gives reasonable results. In general, many DIA source functions exhibit complicated
behavior and spurious oscillations. Major peaks in these functions coexist with more or less
random small-scale fluctuations. These fluctuations are probably an artifact produced by the
simplified nature of DIA. Exact interactions are the result of averaging over a much larger
number of resonant sets of wave numbers, and are therefore much smoother than the results of
the DIA.
And finally, Fig. 7 compares the DIA, NNIA, and exact algorithms in terms of the accuracy

and computational efficiency. Computational time (in s) corresponds to a control calculation
performed on the same computer. The current preliminary version of the NNIA algorithm is
twice as accurate and only about five times slower than the DIA algorithm. In the current
version of the wind wave models, an algorithm that is up to 20 times slower than DIA can be
accommodated; therefore, we still have enough room for further improving the accuracy of
the NNIA. Considering that no optimization has yet been applied in the development of the
NNIA composition and decomposition procedures, it appears reasonable to expect a final
NNIA algorithm with computation requirements similar to DIA but with significantly better
accuracy.

4. Conclusions

In this paper we formulated a new approach for simplifying and accelerating time-consuming
calculations in environmental numerical models using NN techniques. Parameterizations of
physical, chemical, and biological processes, which occur at different scales, constitute an
important class of such calculations. It is shown that, from a mathematical point of view, de-
scriptions of such processes can usually be considered as continuous mappings (continuous de-
pendencies between two vectors). It is also shown that NNs are a generic tool for approximation

Fig. 7. Comparison of the accuracy and computational efficiency of the DIA, NNIA, and exact algorithms. The

horizontal time scale is logarithmic.
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of such mappings and, therefore, can be used for fast and accurate approximation of parame-
terizations of such processes. They also provide the entire Jacobian for very little computational
cost. Because the NN Jacobian is computationally cheap, this approach is expected to be very
beneficial when used in 3D and especially in 4D variational data assimilation systems. We applied
this approach to three specific problems associated with oceanic and wave modeling; however, the
method can be applied to efficiently calculate some columnar physical processes in atmospheric
models as well. For instance, NNs have been used for fast calculation of atmospheric long-wave
radiation by Chevallier et al. (1998, 2000).
The first application considered in the paper deals with the oceanic equation of state, which is

used for estimating the density and salinity of seawater in ocean circulation models. Separate NNs
for density and salinity were developed using the UES as a basis. Although the estimation of
density represents a forward problem, estimating salinity from the UES represents a complicated
inverse problem, which has been very efficiently solved using the NN approach. The accuracy of
the NN-generated densities and salinities were of the same order as those obtained directly from
the UES itself. However, the time required to perform the calculations of density using the NN is
several times less than that for UES. The time required for calculating salinity using the NN is
several hundred times less than that required for the numerical inversion of the USE. Conse-
quently, this approach has direct application to numerical ocean models where the equation of
state must be estimated repeatedly. At NCEP, a NN equation for seawater density is currently
used in the NCEP MSOFS.
The second application deals with the nonlinear wave–wave interactions in wind wave models.

A prototype of the NN approximation for this interaction is presented in this work. The NNIA
calculations of Snl are more accurate than that from DIA by a factor of two and require roughly
4–5 times more computational effort than the DIA calculations with less than 5% of this time
spent in the actual NN part of the algorithm [i.e., Eq. (A.5)]. Decomposition of the input spectra F
and composing the source function Snl from the NN output accounts for the rest. Having es-
tablished that a NNIA has the potential of being both accurate and efficient, we intend to take the
following steps towards developing a NNIA for application in operational wave models: (i) use
more realistic spectra and Snl calculated from them for training; (ii) optimize the NNIA by suc-
cessive integration of physical properties in the basis functions, normalizing F and Snl, optimizing
the number of basis functions and network topology, and optimizing numerical aspects of the
decomposition/compositions algorithms; (iii) expand the NNIA to arbitrary water depths, either
by expanding the underlying NN or by scaling as in the DIA.
Three applications presented in the paper illustrate the strengths and limits of the NNs for the

application to the fast simulation of environmental processes. The NNs are likely to be faster than
original parameterizations. The simulation of environmental processes may involve a large
number of inputs (i.e., several hundreds), which make the NN too complex and complicates the
training. For this complexity problem, two possible solutions were developed: the input and
output vectors may be expanded into a basis (e.g., the NNIA application in this paper) or a
battery of smaller NNs may be used (e.g., infrared radiation application by Chevallier et al.
(1998)). Finally, a cheap computation of Jacobian is one of the advantages of the NN approach.
Using this Jacobian in a combination with the tangent-linear approximation like Eq. (7) can
additionally accelerate calculations (e.g., the seawater density application). However, since Ja-
cobian is not trained, it is simply calculated through direct differentiation of a trained NN. For
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complex NNs the accuracy of the NN Jacobian may not be sufficient for using with the tangent-
linear approximation and the approach may require some refinements.
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Appendix A. Neural network––a generic tool for continuous mappings

In Section 2 we showed that both forward and inverse parameterizations (Eqs. (1a) and
(1b)) can be considered as continuous mappings which map a vector of input parameters, X 2 Rn,
to a vector of output parameters, Y 2 Rm or vice versa (for the inverse parameterization).
These mappings are defined on finite discrete sets of pairs of input/output vectors X and Y, fXi;
Yigi¼1;...;N .
NNs are well suited for a very broad class of such nonlinear approximations and mappings

(Funahashi, 1989). Any continuous mapping with a finite number of discontinuities can be ap-
proximated. A NN is a complicated combination of uniform processing elements, nodes, units, or
neurons (Bishop, 1995; Haykin, 1994; Ripley, 1996). A typical processing element is shown in Fig.
8. Each processing element usually has several inputs (components of vector X) and one output,
zj. The neuron usually consists of two parts, a linear part and a nonlinear part. The linear part
calculates the inner product of the input vector X and a weight vector Xj (which is a column of the
weight matrix Xji), and adds a bias, Bj. The result of this linear transformation of the input vector
X goes into the nonlinear part of the neuron as the argument of an activation function u. The
neuron output, zj, can be written as

zj ¼ /
Xn
i¼1

XT
jixi

 
þ Bj

!
; X 2 Rn�m; B 2 Rm: ðA:1Þ

For the activation function u, it is sufficient to be a Tauber–Wiener (nonpolynomial, continuous,
bounded) function (Chen and Chen, 1995a,b). The three mostly popular activation functions are

Fig. 8. Typical processing element (neuron). Linear and nonlinear parts of the neuron are shown.
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sigmoid, which is /ðxÞ ¼ f1þ expð�xÞg�1; x 2 ð�1;1Þ; / 2 ð0; 1Þ, hyperbolic tangent, and
step function. The neuron is a nonlinear element because its output zj is a nonlinear function of its
inputs X. Neurons can be connected in many different ways into networks with complicated ar-
chitectures (or topologies). The most common topology for approximating continuous map-
pings is the MLP, which is shown in Fig. 9. Only this type of the NNs is described here because it is
sufficient for solving any continuous mapping problems. In a MLP, neurons are situated
into layers. The neurons in the input layer are linear; they are simple distributors of inputs.
The number of input neurons in the input layer is equal to the number of inputs (dimension
of input vector X). The neurons in the output layer may be linear and/or nonlinear, depending
on the problem to be solved. The number of output neurons in the output layer is equal to
the number of outputs (dimension of output vector Y). The neurons in the hidden layer(s) are
usually nonlinear. The number of hidden layers, the number of neurons in each hidden layer, and
the type of connections between neurons and layers depend on the complexity of the problem to
be solved.
The topology of the MLP shown in Fig. 9 is called feed-forward (there are no feedbacks; the

data flow moves only forward) and fully connected (each neuron in a previous layer is connected
to each neuron in the following one). Symbolically this mapping can be written as

Y ¼ FNNðX Þ; ðA:2Þ

where FNN denotes this NN mapping. For the NN topology shown in Fig. 9, using (A.1) and
assuming k neurons in one hidden layer, a linear output layer, and activation function,
uðxÞ ¼ tanhðxÞ, the symbolic expression (A.2) can be written down explicitly as

Fig. 9. MLP—feed forward, fully connected topology.
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yq ¼
Xk
j¼1

xqjzj þ bq ¼
Xk
j¼1

xqj /
Xn
i¼1

Xjixi

 "
þ Bj

!#
þ bq

¼
Xk
j¼1

xqj tanh
Xn
i¼1

Xjixi

 "
þ Bj

!#
þ bq; ðA:3Þ

where the matrix Xji and the vector Bj represent weights and biases in the neurons of the hidden
layer; xqj and the bq represent weights and biases in the neurons of the output layer. For some
applications (e.g., see Section 2) we need to know the Jacobian matrix, whose elements are partial
derivatives oyi=oxj. From (A.3) these derivatives can be calculated analytically,

oyq
oxp

¼
Xk
j¼1

ð1� z2j ÞXpjxjq: ðA:4Þ

It has been shown by many authors (e.g., Chen and Chen, 1995a,b; Hornik, 1991; Funahashi,
1989; Cybenko, 1989) that a NN with one hidden layer, like NN (A.3), can approximate any
continuous mapping defined on compact sets in Rn. It means that any problem, which can be
mathematically reduced to a nonlinear mapping like (1a) or (1b), can be solved using the NN
represented by (A.3). NN solutions (A.3) for different problems can have different number of
inputs, n, and outputs, m. They can have different numbers of neurons, k, in the hidden layer.
They will also have different weights and biases in the hidden and output layers. The next and
crucial problem is how to determine all these parameters.
For each particular problem, n and m are determined by the dimensions of the input and output

vectors X and Y. The number of hidden neurons, k, in each particular case should be determined
taking into account the complexity of the problem. The more complicated the mapping, the more
hidden neurons are required (Attali and Pag�ees, 1997). Unfortunately, there is no universal rec-
ommendation to be given here. Usually k is determined by experience and experiment. After these
topological parameters are defined, the weights and biases can be found, using a procedure, which
is called NN training, which is essentially a complicated nonlinear optimization procedure.
Various methods developed for nonlinear optimization (Dennis and Schnabel, 1983) can be ap-
plied for the NN training.
NN techniques can be also considered as an advanced statistical approach (Ripley, 1996). The

MLP technique is very close to some advanced nonlinear regression techniques.
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