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ABSTRACT

The application of Special Sensor Microwave/Imager (SSM/I) multiparameter satellite retrievals in operational
weather analysis and forecasting is addressed. More accurate multiparameter satellite retrievals are now available
from an SSM/I neural network algorithm. It also provides greater areal coverage than some of the initial
algorithms. These retrievals (ocean surface wind speed, columnar water vapor, and columnar liquid water), when
observed together, provide a meteorologically consistent description of synoptic weather patterns over the oceans.
Three SSM/I sensors are currently in orbit, which provide sufficient amounts of data to be used in a real-time
operational environment. Several examples are presented to illustrate that important synoptic meteorological
features such as fronts, storms, and convective areas can be identified and observed in the SSM/I fields retrieved
by the new algorithm. The most recent version of the neural network algorithm retrieves simultaneously four
geophysical parameters: ocean-surface wind speed, columnar water vapor, columnar liquid water, and sea surface
temperature, allowing the knowledge of each variable to contribute directly to better accuracy in ocean surface
wind speed retrievals. The neural network wind speed data were recently incorporated as a part of operational
Global Data Assimilation System at the National Centers for Environmental Prediction.

1. Introduction

Beginning in 1987, a series of Special Sensor Mi-
crowave/Imager (SSM/I) instruments was launched as
a part of the Defense Meteorological Satellite Program
(DMSP) (Hollinger et al. 1987). DMSP SSM/I satellites
are polar-orbiting satellites with a 102-min orbit. Each
satellite provides coverage over a particular ocean basin
twice a day, once during a descending orbit and once
during an ascending orbit. The SSM/I generates bright-
ness temperatures in seven channels at four frequencies
(19, 22, 37, and 85 GHz), each with vertical and hor-
izontal polarization (the 22-GHz channel senses only
vertical polarization). The spatial resolution is about 50
km at 19 and 22 GHz, about 30 km at 37 GHz, and 15
km at 85 GHz. The SSM/I infers brightness tempera-
tures (BTs) from the ocean surface passively, receiving
microwave radiation emitted by the ocean surface and
passed through the atmosphere. The emission is effected
by the surface wind speed (which changes the roughness
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of the ocean surface) and by the sea surface temperature
(SST). The propagation of the microwave radiation
through the atmosphere is influenced by the integrated
amounts of water vapor and liquid water in the atmo-
spheric column (Wentz 1992, 1997). As a result the
brightness temperatures carry signals from all these geo-
physical parameters and can then be converted into geo-
physical parameters (surface wind speed, columnar wa-
ter vapor, columnar liquid water, and SST) using re-
trieval algorithms.

DMSP satellites have substantially increased the
amount of real-time meteorological data that is acquired
over the oceans, which are used subjectively (manually)
by marine meteorologists to improve ocean surface
weather map analyses, and objectively by numerical
analysis systems to provide initial conditions for nu-
merical weather prediction models. With three satellites
in orbit (F11, F13, and F14) and with a swath width of
about 1400 km for each of the satellites, high-resolution
coverage is now available almost globally on a daily
basis.

Empirical retrieval algorithms (or transfer functions)
have been developed separately for various geophysical
parameters such as surface wind speed [Goodberlet et
al. (1989); Petty (1993); see also the appendix], colum-
nar water vapor (Alishouse et al. 1990), and columnar
liquid water (Weng and Grody 1994). The empirical
retrieval algorithm is usually derived from a high-qual-
ity dataset that collocates the satellite brightness tem-
peratures with buoy- and/or radiosonde-measured geo-
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physical variables in time and space. The physically
based algorithms use a large amount of such empirical
data for parametrizations (Wentz 1997). The collocated
matchup dataset requires a large data sample in order
to represent a wide range of global meteorological
events. High–wind speed events have been fairly rare
in most matchup datasets because winds speeds of gale
force (.17 m s21) or greater at a given time cover no
more than 5% of the global ocean surface.

Some of the initially developed retrieval algorithms
are based on a simple statistical technique such as linear
regression and, as a result, have limited retrieval ca-
pabilities. Careful validations and evaluations of the re-
trievals over a period of time are required to sample a
wide range of meteorological conditions and to deter-
mine the conditions for which the transfer functions do
not perform well. Such validations invariably show that
the initial algorithms have serious limitations in pro-
viding good-quality data over regions where weather
conditions are rapidly changing. Hence the necessity to
examine the possibility of making improvements to the
retrieval algorithm arises (Gemmill et al. 1996).

The purpose of this paper is to address the application
of improved SSM/I multiparameter satellite retrievals
for use in operational marine weather analysis and fore-
casting. These retrievals are now available at the Na-
tional Centers for Environmental Prediction (NCEP)
(McPherson 1994) as a result of applying the latest
SSM/I neural network algorithm to BTs from three
SSM/I sensors. This algorithm provides detailed and
accurate fields of meteorological variables1 over the
oceans and the coverage is extensive because of the
number of satellites that are currently in operation. The
new neural network algorithm derives surface wind
speed (W), columnar water vapor (V), columnar liquid
water (L), and sea surface temperature (SST) simulta-
neously from SSM/I brightness temperatures. Although
these parameters have already been retrieved separately
by other techniques, it is the simultaneous retrieval by
the neural network (NN; see the appendix for brief tu-
torial) that is unique, allowing the information from one
parameter to contribute to a better estimate of the other
parameters. The parameters retrieved by the NN, when
observed together, can provide information about syn-
optic weather patterns over the oceans (Gemmill and
Krasnopolsky 1998) that is more comprehensive and
internally consistent than that from a single parameter
(see section 2 for details).

In order to show that the fields (W, V, and L) retrieved
from SSM/I can provide information about significant
synoptic meteorological features like fronts, convective
areas, and areas with high probability of precipitation,
in section 3 we present two case studies. There three
SSM/I fields are compared with 1) surface observations

1 These fields can be seen at http://polar.wwb.noaa.gov/winds.

(buoys and ships), 2) independent satellite winds from
the second European Remote Sensing satellite (ERS-2)
scatterometer, 3) objective (performed by computer)
analysis, and 4) subjective (performed by a meteorol-
ogist–analyst) analysis provided by Marine Prediction
Center. The Marine Prediction Center (MPC) of NCEP
is responsible for issuance of warnings, forecasts, and
guidance in text and graphical form for marine users at
sea (McPherson 1994). The two major areas of respon-
sibility of the MPC are the North Pacific and North
Atlantic Oceans. This information is routinely dissem-
inated via U.S. Coast Guard radio and the Internet. The
analyses and forecasts, out to 120 h, include sea level
pressure (to locate storm centers and fronts), as well as
wind, significant wave height, and wave train direction.
The analyses and forecasts are subjectively produced by
marine meteorologists integrating information using nu-
merical model guidance from NCEP and other opera-
tional centers, in situ surface marine weather informa-
tion, satellite-derived ocean-surface observations, and
various atmospheric satellite imagery. The MPC, also
as part of its duties, quality-controls marine observa-
tions from ships, buoys, and automated marine coastal
stations.

2. Work on improvement of accuracy of SSM/I
retrievals

A retrieval algorithm relates a vector of geophysical
parameters, g, which in our case is g 5 {W, V, L, SST},
to the vector of satellite measurements, T, which in our
case is a vector of SSM/I brightness temperatures. This
relationship can be symbolically represented as

g 5 f (T), (1)

where f is usually called a transfer function. In the case
of SSM/I the transfer function f is essentially nonlinear
especially when the amount of moisture in the atmo-
sphere is significant (Petty 1993; Stogryn et al. 1994).
Each particular retrieval algorithm corresponds to a par-
ticular choice of geophysical parameters to retrieve
(vector g), brightness temperatures to use (vector T), a
mathematical (statistical) model for the transfer function
f, and a development dataset.

Most previous SSM/I retrieval algorithms retrieve one
variable at a time. The original global algorithm for
retrieving ocean-surface wind speed from SSM/I was
developed by Goodberlet et al. (1989) (GSW algorithm).
This algorithm is based on linear regression and is pri-
marily limited to low moisture conditions. Further, since
there were only a few wind speed observations in the
high range (.18 m s21) in the matchup dataset used to
formulate the GSW algorithm, the algorithm could not
be expected to perform well at retrieving high winds.
In general, lower accuracy of high–wind speed retrievals
is a common problem for most wind speed algorithms
(Boutin and Etcheto 1996).

Because of atmospheric moisture contamination and
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FIG. 1. Evolution of the SSM/I neural network architecture from OMBNN1 to OMBNN3.
Brightness temperature from SSM/I channels used as input to the algorithms and geophysical
parameters retrieved as outputs from the algorithms are shown. OMBNN1 has four inputs, one
hidden layer with two neurons, and one output: wind speed. OMBNN2 has five inputs, one hidden
layer with two neurons, and one output: wind speed. OMBNN3 has five inputs, one hidden layer
with 12 neurons, and four outputs: wind speed, columnar water vapor, columnar liquid water, and
sea surface temperature.

high–wind speed limitations, wind speeds cannot be ac-
curately determined with this algorithm in areas with
significant levels of atmospheric moisture (e.g., in large
parts of the Tropics) and cannot be retrieved in the vi-
cinity of storms and fronts. Petty (1993) introduced a
nonlinear correction to the GSW algorithm (GSWP al-
gorithm) that improves the accuracy of the wind speed
retrievals in areas with higher amounts of the water
vapor (in much of the Tropics, for example). Recently
(October 1997) this version of the algorithm became
operational via the shared data processing center at Fleet
Numerical Meteorological and Oceanographic Center.

Several algorithms have been developed to retrieve
columnar water vapor (Alishouse et al. 1990; Petty
1993) and columnar liquid water (Weng and Grody
1994; Weng et al. 1997). However, all these algorithms
(including wind speed algorithms) have been developed
independently using different datasets. They were for-
mulated without taking into account the interdependen-

cy of these parameters and without accounting for the
physical relationships among the parameters.

For the past five years, NCEP has concentrated on
improving the accuracy of SSM/I satellite-derived
ocean-surface wind speeds, columnar water vapor, and
columnar liquid water for both marine meteorology ap-
plications and numerical weather prediction. A series of
algorithms (see Fig. 1) has been formulated using NNs,
each one more complex and accurate than the previous
one. A brief review of NN theory as related to our topic
is presented in the appendix. NNs were chosen because
they have been highly successful in meteorological and
oceanographic applications (Hsieh and Tang 1998) and
in resolving complex nonlinear relationships between
the sensor output and the atmospheric variable of in-
terest (Thiria et al. 1993; Stogryn et al. 1994; Jung et
al. 1998). Hence, they were able to provide an effective
method for dealing with high moisture conditions while
deriving wind speeds. The two first NN SSM/I wind
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TABLE 1. Comparison of bias, total rms error, and high wind speed
(W . 15 m s21) rms error, for buoy wind speed vs SSM/I wind speed,
and for five SSM/I wind speed algorithms, with all errors in m s21.
Errors calculated over more than 12 000 buoy–SSM/I matchups.
Numbers outside the parentheses correspond to clear and in the pa-
rentheses to clear 1 cloudy conditions.

Algorithm Bias Total rmse
W . 15 m s21

rmse

GSWa

GSWPb

Physically basedc

OMBNN3d

20.2 (20.5)
20.1 (20.3)

0.1 (20.1)
20.1 (20.2)

1.8 (2.1)
1.7 (1.9)
1.7 (2.1)
1.5 (1.7)

(2.7)
(2.6)
(2.6)
(2.3)

a Multiple linear regression (Goodberlet et al. 1989).
b Multiple linear regression with nonlinear water vapor correction

(Petty 1993).
c Inversion of a physically based forward model (Wentz 1997).
d Neural network (Krasnopolsky et al. 1996).

FIG. 2. Binned mean value (bias) and standard deviation (SD) of the difference between the
buoy and SSM/I wind speeds vs columnar water vapor, columnar liquid water, and SST. GSW
algorithm, dashed line with diamonds; GSWP algorithm, dotted line with stars; OMBNN3, solid
line with crosses.

speed retrieval algorithms OMBNN1 and OMBNN2
(Krasnopolsky et al. 1995a,b; 1999) were developed
using the same matchup database of SSM/I brightness
temperatures (from the F8 satellite) with buoy wind
speeds that was used to develop the GSW algorithm.

More recently, a rather comprehensive SSM/I and
buoy matchup dataset was provided by the Naval Re-
search Laboratory (NRL) for algorithm development.
The NRL dataset contains more data and has better cov-
erage of high wind events than the previous dataset used
by GSW. Further, other high-latitude SSM/I ocean–
weather ship matchup datasets were obtained from Bris-
tol University (D. Kilham 1996, personal communica-
tion). The NN was retrained with the new wind speed

data for one parameter (wind speed only) retrievals, but
large errors at high wind speeds still occurred.

Hence, a new NN architecture was formulated (Fig.
1) that takes into account the interdependence of phys-
ically related atmospheric and oceanic parameters (wind
speed, columnar water vapor, columnar liquid water, and
sea surface temperature). The new OMBNN3 algorithm
(Krasnopolsky et al. 1999, 1998, 1997, 1996) utilizes
five SSM/I brightness temperature channels. It simul-
taneously produces all four parameters. This algorithm
was trained to preserve proper physical relationships
among these parameters. The algorithm has extended
the range of wind speeds over which useful retrievals
can be obtained. It not only improves the accuracy of
the wind speed retrievals, especially at high wind speeds
(without bias correction), but makes available three ad-
ditional fields. The OMBNN3 algorithm is represented
by expression [Eq. (A.3) in the appendix] where n 5 5
(inputs T19V, T19H, T22V, T37V, T37H), m 5 4 (out-
puts W, V, L, SST), and k 5 12 (hidden nodes).

Table 1 indicates the importance of the inclusion of
water vapor, liquid water, and SST in retrieval algo-
rithms on the accuracy of wind speed. The GSW is the
original linear algorithm, and the GSWP algorithm con-
tains the water vapor correction suggested by Petty
(1993). The rms error statistics of the OMBNN3 al-
gorithm, which takes into account also the liquid water
and SST influences, are lower than those of the GSWP
algorithm over all wind speeds, and especially at wind
speeds .15 m s21. Figure 2 shows the wind speed dif-
ference (buoy minus satellite wind speeds) character-
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istics (retrieval errors in wind speed) as functions of
three other parameters: columnar water vapor, columnar
liquid water, and sea surface temperature for three al-
gorithms GSW, GSWP, and OMBNN3. Including a non-
linear water vapor correction in GSWP reduced the bias
and its dependence on the water vapor concentration
(and partly on SST, which is closely related to water
vapor); however, it did not reduce its dependence on the
liquid water concentration. This correction also did not
significantly improve the standard deviation of the dif-
ferences. The OMBNN3 algorithm, with its simulta-
neous multiparameter retrievals, reduced the bias and
its dependence on all three other parameters together
with a significant improvement in the standard deviation
of the differences.

The NN retrievals for columnar water vapor and co-
lumnar liquid water are in good agreement with existing
SSM/I algorithms. No attempt was made to verify these
retrievals against observed data because of the lack of
collocated observations. The details of the development
of OMBNN3 and its validation have been documented
by Krasnopolsky et al. (1999, 1998, 1997, 1996). The
accuracy of the SST retrievals is lower than the accuracy
of Advanced Very High Resolution Radiometer SST;
however, the SSTs give secondary information that im-
proves the accuracy of the wind speed retrievals, es-
pecially at high wind speeds. Because this algorithm is
inherently nonlinear, it increases areal coverage in areas
with significant levels of atmospheric moisture and un-
der more active and critical weather systems such as
storms and fronts.

OMBNN3 has been extensively evaluated at NCEP
using real-time data from F10, F11, F13, and F14
SSM/I instruments. Simultaneous retrievals of wind
speed, columnar water vapor, and columnar liquid water
fields using OMBNN3 were examined to reveal signif-
icant information concerning weather patterns over the
ocean. In the Global Data Assimilation System (GDAS)
at NCEP, impact studies similar to those performed ear-
lier for OMBNN2 (Yu et al. 1997) have been performed
using the OMBNN3 algorithm and further positive im-
pact was observed as compared to both GSW and
OMBNN2 (T.-W. Yu 1998, personal communication).
Based on these results the OMBNN3 ocean-surface
wind speed retrievals were incorporated into the oper-
ational GDAS at NCEP in April 1998.

3. Interpretation of SSM/I neural network–derived
data for weather analysis

In this section, we show that the three meteorological
variables (ocean-surface wind speed, columnar water
vapor, and columnar liquid water) that are produced
simultaneously by the new OMBNN3 algorithm can
provide a clear descriptive analysis of the weather over
the ocean. Moreover, we show how the interpretation
of the three variables together can give a more complete

description of marine weather than by using the ocean
wind speed data alone.

The ocean-surface wind speed data have the most
direct use in marine weather analysis and weather fore-
casting. Although these data provide wind speed only,
the extensive coverage of the three satellites depicts
high-resolution wind speed patterns across synoptic
weather systems. These data can be used directly to
improve ocean-surface wind analyses and indirectly to
improve sea level pressure analyses.

The columnar water vapor and columnar liquid water
values are vertically integrated through the entire at-
mosphere. The columnar water vapor is also known as
total precipitable water, which is the depth of water
that would fall on the ocean if all the water vapor were
condensed and precipitated. Columnar water vapor is
an airmass characteristic closely related to synoptic-
scale features. The primary source of water vapor is
located over the warm tropical ocean. Water vapor is
carried vertically by deep convection along convergent
zones in the Tropics and is advected to higher latitudes
by storms and low- and midlevel jet streams. As a
result, regions with large gradients of columnar water
vapor have been shown to be good objective indicators
of the position of an ocean surface front (Katsaros et
al. 1989).

The liquid water resides in clouds and is more directly
related to regions of precipitation and to active weather
systems such as storms and fronts (McMurdie and Kat-
saros 1996). Large liquid water amounts are generally
associated with strong convective activity (cumulus
clouds) and unstable surface weather conditions, where-
as small amounts of liquid water are associated with
near neutral or stable regions (stratiform clouds).

Some examples

Here we present two examples to show the use of
the SSM/I data retrieved from the OMBNN3 algorithm.
The examples cover two regions: one for the eastern
North Pacific, and one for the western North Atlantic
Ocean. For each case, a marine weather map analysis
is first presented to identify major weather features
over the region (Figs. 3 and 5). Marine weather maps
for the North Pacific Ocean and the North Atlantic
Ocean are manually produced every 6 h by the Marine
Prediction Center. These analyses are based on the in-
terpretation and intercomparison of various data sourc-
es, including the 6-h sea level pressure forecast from
the global numerical weather prediction model, as a
first guess, cloud imagery from Geostationary Oper-
ational Environmental Satellite and Advanced Very
High Resolution Radiometer satellite systems, and
quality-controlled surface data from ships, fixed and
drifting buoys, and coastal stations. The analyses por-
tray contours of sea level pressure to locate storm cen-
ters, fronts, and other important weather features and
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FIG. 3. Surface marine weather map for eastern North Pacific Ocean, 0600 UTC 12 Mar 1998.

to identify areas of high wind speeds, such as gale-
and storm-force winds.

Each example includes a series of plots (Figs. 4 and
6): (a) SSM/I ocean-surface wind speed, (b) SSM/I co-
lumnar water vapor, (c) SSM/I columnar liquid water,
(d) ocean-surface wind data from buoys and ship, (e)
ERS-2 scatterometer vector wind data that have been
reprocessed at NCEP from the real-time ERS back-
scatter and geometrical data records in order to improve
the wind direction selection (Gemmill et al. 1996), and
(f ) the sea level pressure analysis available from the
NCEP’s GDAS. GDAS is based on objective (mathe-
matical and statistical) methods. It updates the 3D first
guess model fields using all available current datasets
(i.e., satellite vertical soundings, satellite surface ob-
servations, radiosonde and aircraft data, surface data).
The first-guess fields and various observational datasets

are given weights (the higher the accuracy of the data,
the higher their weight in analysis) to produce the
‘‘best’’ approximation (optimal analysis) of the current
state of the atmosphere.

The plots of satellite data are within a 63-h time
window about the analysis time. The SSM/I data are a
composite from three DMSP satellites (F11, F13, and
F14), which together provide almost complete and ex-
tensive regional coverage.

The two cases, shown as examples here, demonstrate
that SSM/I wind speeds are consistent with other data:
ship, buoy, and ERS-2 scatterometer winds; the numer-
ical sea level pressure analysis; and the manual marine
weather analysis. They also show that the SSM/I co-
lumnar water vapor and liquid water provide additional
information to describe important weather features.
Comparison of various plots show that each SSM/I da-
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FIG. 4. (a) SSM/I-derived ocean surface wind speed data, (b) SSM/I-derived columnar liquid water data, (c) SSM/I columnar water vapor
data, (d) buoy and ship wind data, (e) ERS-2 scatterometer wind vector data, and (f ) sea level pressure analysis from global analysis system
over eastern North Pacific Ocean, 0600 UTC 12 Mar 1998. Each panel covers an area from 158 to 658N and from 1658 to 1158W.

taset retrieved from the SSM/I through the NN algorithm
provides information that either supports or comple-
ments a consistent weather analysis interpretation.

1) EXAMPLE 1: EASTERN NORTH PACIFIC OCEAN,
0600 UTC 12 MARCH 1998

The marine weather analysis for the northeastern Pa-
cific at 0600 UTC 12 March 1998 is presented in Fig.
3. The main weather feature in the northeast Pacific is
a moderate storm with a central pressure of 982 mb,
located near 438N and 1388W, 600 n mi west of the
Oregon coast. The storm itself is labeled ‘‘GALE,’’ in-
dicating winds above 16–17 m s21. Within its circula-
tion, this storm has wrapped around the occlusion from
the north to the northwest of the center, with a cold front
to the east, located about 300 n mi from the Washington
to California coasts near 1318W. The front trails back
toward the west and, eventually, toward the northwest
to the leading edge of the next storm, which is in the

central Pacific near the date line. There is another small
low analyzed just off the southern coast of Alaska. A
major high pressure ridge lies across the southern part
of the region along 268–288N. Winds are near 15 m s21

to the southwest of the storm and about 20 m s21 closer
to the storm center.

The sea level pressure analysis from the global model
at 0600 UTC shows little difference from the MPC anal-
ysis. The MPC analysis has the storm slightly deeper
by 4 mb than the global model analysis (Fig. 4f ).

The SSM/I wind field (Fig. 4a) shows the storm to
be fairly circular and moderate in size. The yellow
region shows the outer limit of the 10 m s21 winds,
and the orange region shows the gale force region
southwest of the center and 20 m s21 winds near the
center. Due to high moisture content (L . 0.4–0.45
mm) that makes retrievals impossible, and due to an
occasional bad scan line (SSM/I BTs are corrupted and
rejected by a quality control), there are areas without
wind speed data. The northward-moving occluded
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front is associated with a band of high wind speeds
(15 m s21). Just ahead of the eastward-moving cold
front there is a wind band with winds up to 12.5–15
m s21 , but the strongest winds are masked due to high
moisture contamination (possible rain). The weak low
south of Alaska has winds near 15 m s21 along the
coast. The storm farther west is already generating 20–
23 m s21 winds ahead of the occlusion.

The liquid water (Fig. 4b) shows a wraparound pat-
tern along the cold front and then along the occlusion
into the center. The greatest liquid water values quite
likely are associated with rain areas that precede the
occlusion and cold front. Lower values are indicated
behind the fronts. The water vapor (Fig. 4c) shows the
distinct pattern associated with the air masses. The
large water vapor gradient zone has been recognized
as a quantitative parameter for the location of oceanic
fronts by Katsoras et al. (1989), it clearly depicts the
location of the cold front. The water vapor shows a
strong flow of moist air moving from north of Hawaii
to the U.S. northwest coast.

The in situ buoy and ship wind data (Fig. 4d) are
plotted four times a day at the standard synoptic times
of 0000, 0600, 1200, and 1800 UTC. The satellite data
are taken within 3 h of the surface ship and buoy data.
Although the winds show the circulation associated with
a storm, the intensity and location of the storm center
cannot be determined from the ship and buoy data alone.
Determination of those values is aided by the SSM/I-
derived data, and where there are in situ surface wind
reports, they corroborate the values of the SSM/I-de-
rived wind speed data. Likewise, the ERS-2 scatterom-
eter wind data (Fig. 4e) and SSM/I wind data are in
close agreement.

2) EXAMPLE 2: WESTERN NORTH ATLANTIC

OCEAN, 1200 UTC 25 FEBRUARY 1998

The main weather feature in the western North At-
lantic is a moderate storm with a central pressure of 984
mb, located near 428N and 688W, 600 n mi off the coast
of New England (Fig. 5). That storm is labeled
‘‘STORM,’’ indicating wind speeds above 24 m s21. An
occlusion extends from the north to the southeast, with
a cold front far out in the Atlantic trailing back to Ja-
maica. There is another major storm off Greenland, and
a minor storm in the central Atlantic near 308N. A major
high pressure ridge is oriented north–south, centered at
488N and 428W (1037 mb). The plotted winds show a
rather large region of strong winds (17–23 m s21) within
600–800 n mi of the center of the storm. The sea level
pressure analysis from the numerical global model at
1200 UTC (Fig. 6f) shows little difference from the
manual MPC analysis (Fig. 5).

The SSM/I wind field (Fig. 6a) shows the storm to
be fairly circular. The yellow region shows the outer
limit of the 10 m s21 winds, and the orange region
shows the gale-force winds around the center of the

system with speeds to 22.5 m s21 . The SSM/I data
indicate 25 m s21 winds for the Greenland storm. SSM/
I data also indicate a band of 18 m s21 winds on the
western side of the weak system in the central Atlantic.

The liquid water values (Fig. 6b) are greatest to the
southwest of the storm center, east of Cape Hatteras
and south of Cape Cod, associated with a trough line
crossing the area east of the Gulf Stream.

The water vapor (Fig. 6c) clearly delineates the air
masses, but does not identify much structure with the
occluded system itself, where the storm has already en-
trained and mixed in dryer air (low water vapor values)
from higher latitudes. However, the associated fronts
are clearly identified, especially by the large water vapor
gradient across the southwest portion of the figure. The
water vapor shows a strong flow of moist air moving
from the Caribbean north into the eastern portion of the
storm.

The surface wind data reports (Fig. 6d) and the cor-
responding satellite wind data are in close agreement.
Note the region near 428N between 508 and 608W, where
the surface wind speed data approach 25 m s21. The
satellite wind speeds in that region are only slightly
lower, about 22.5 m s21. Also, note the ship report of
30 m s21 east of Greenland. In that area the satellite
data indicate wind speeds of 25 m s21. Likewise, the
ERS-2 scatterometer winds (Fig. 6e) and SSM/I winds
are in close agreement. The wind speeds and pattern are
similar.

4. Summary

We have illustrated the analysis of meteorological
variables retrieved over the oceans from the SSM/I by
the new neural network algorithm. Comparisons with
the subjective (manual) and objective analyses show that
independent SSM/I retrievals provide information that
is, in general, in agreement with all other available data
and with the first guess obtained from the numerical
weather prediction model. Moreover, the fact that as-
similation of the SSM/I retrievals in GDAS gives rise
to a positive impact on the accuracy of numerical weath-
er prediction model demonstrates that SSM/I retrievals
provide an additional information as compared with the
other data sources.

In its latest form, the multiparameter neural network
algorithm (OMBNN3) has been shown to adequately
provide weather information on ocean-surface wind
speed data, columnar water vapor, and columnar liquid
water over a wide range of values of these parameters
with accuracies that are operationally useful. Also,
multiparameter retrievals preserve the correct physical
relationships among the retrieved parameters. Each da-
taset retrieved from the SSM/I through the NN algo-
rithm provides information that either supports or com-
plements a consistent weather analysis interpretation.
The algorithm generates high wind speeds (.15 m s21)
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FIG. 5. Surface marine weather map for western North Atlantic Ocean, 1200 UTC 25 Feb 1998.

in areas where such winds are well supported by other
data and are expected from sea level pressure analyses.

The algorithm generates columnar water vapor pat-
terns that are able to delineate and characterize air
masses; low values are associated with air masses orig-
inating in high latitudes that are cold and dry, high
values are associated with air originating in tropical
areas that are warm and moist, and high gradients of
the columnar water vapor are related to the position of
ocean surface fronts. The algorithm generates colum-
nar liquid water patterns that are related to regions of
water vapor convergence, resulting in clouds, which
are closely associated with cyclones and active frontal
locations.
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FIG. 6. (a) SSM/I-derived ocean-surface wind speed data, (b) SSM/I-derived columnar liquid water data, (c) SSM/I columnar water vapor
data, (d) ship and buoy wind data, (e) ERS-2 scatterometer wind vector data, and (f ) sea level pressure analysis from global analysis system
over western North Atlantic Ocean, 1200 UTC 25 Feb 1998. Each panel covers an area from 158 to 658N and from 828 to 328W.

APPENDIX

Neural Networks and Retrieval Algorithms

As was shown in section 2, a retrieval algorithm
(transfer function) is a relationship, f [Eq. (1); usually
nonlinear], between two vectors: a vector of geophysical
parameters, g, and a vector of satellite measurements,
T, g 5 f(T). Such a relationship between two vectors
is called continuous mapping.

Neural networks are well suited for a very broad
class of continuous approximations and mappings.
Neural networks consist of layers of uniform pro-
cessing elements, nodes, units, or neurons. The neu-
rons and layers are connected according to a specific
architecture or topology. Figure A1 shows a simple
architecture that is sufficient for any continuous non-
linear mapping, a multilayer perceptron. The number
of input neurons, n, in the input layer is equal to the
dimension of input vector X (T in our particular case).

The number of output neurons, m, in the output layer
is equal to the dimension of the output vector Y (g
in our particular case). A multilayer perceptron al-
ways has at least one hidden layer with k neurons in
it.

A typical neuron (processing element) usually has
several inputs (components of vector X); one output, zj;
and consists of two parts, a linear part and a nonlinear
part. The linear part forms the inner product of the input
vector X with a weight vector V j (which is one column
of the weight matrix V), and may also add a bias term,
Bj. This linear transformation of the input vector X feeds
into the nonlinear part of the neuron as the argument
of an activation function. For the activation function, it
is sufficient that it be a Tauber–Wiener (nonpolynomial,
continuous, bounded) function (Chen and Chen 1995a,
b). Here we use a standard activation function—the hy-
perbolic tangent. Then, the neuron output, zj, can be
written as
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FIG. A1. Architecture of a simple neural network with one hidden layer.

n

Tz 5 tanh V x 1 BOj ji i j1 2i51

n3k kV ∈ R ; B ∈ R . (A1)

The neuron is a nonlinear element because its output zj

is a nonlinear function of its inputs X.
From the discussion above it is clear that the NN

generally performs a continuous (and nonlinear) map-
ping of an input vector X ∈ Rn (n is the dimension of
the input vector or the number of inputs) onto an output
vector Y ∈ Rm (m is the dimension of the output vector
or the number of outputs). Symbolically, this mapping
can be written as

Y 5 fNN(X), (A2)

where fNN denotes this neural network mapping (the NN
input–output relation).

For the topology shown in Fig. A1 for an NN with
k neurons in one hidden layer, and using (A1) for each
neuron in the hidden and output layers, (A2) can be
written explicitly as

k n

T Ty 5 b 1 a tanh v tanh V x 1 B 1 b ,O Oq q q qj ji i j q5 1 2 6[ ]j51 i51

q 5 1, . . . , m, (A3)

where the matrix V and the vector B represent weights
and biases in the neurons of the hidden layer, v ∈ Rk3m

and the b ∈ Rm represent weights and biases in the
neurons of the output layer, and aq and bq are scaling
parameters. It can be seen from (A.3) that any com-

ponent (yq) of the NN’s output vector Y is a complicated
nonlinear function of all components of the NN’s input
vector X. It has been shown (e.g., Chen and Chen 1995a,
b; Funahashi 1989) that an NN with one hidden layer
[e.g., NN (A3)] can approximate any continuous map-
ping defined on compact sets in Rn.

For each particular problem, n and m are determined
by the dimensions of the input and output vectors X
and Y. The number of hidden neurons, k, in each par-
ticular case should be determined taking into account
the complexity of the problem. The more complicated
the mapping, the more hidden neurons are required. Un-
fortunately, there is no universal rule that applies. Usu-
ally k is determined by experience and experiment. In
general, if k is too large, the NN will reproduce noise
as well as the desired signal. Conversely, if k is too
small, the NN is unable to reproduce the desired signal
accurately. After these topological parameters are de-
fined, the weights and biases can be found, using a
procedure that is called NN training. A number of meth-
ods have been developed for NN training (e.g., Beale
and Jackson 1990; Chen 1996). Here we use a simplified
version of the steepest (or gradient) descent method
known as the backpropagation training algorithm.

Because the dimension of the output vector Y may
obviously be greater than one, NNs are well suited for
modeling multiparameter transfer functions (1). All
components of the output vector Y are produced from
the same input vector X. They are related through com-
mon hidden neurons; however, each particular compo-
nent of the output vector Y is produced by a separate
output neuron that is unique.
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