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A study was conducted to determine how well a quasi-operational ocean forecast model,
given its present configuration and constraints, could reproduce and characterize a
mesoscale circulation feature near the U.S. East Coast, specifically the Chesapeake Bay
plume. A sécondary goal was to determine the impact of anomalous discharge from the
Bay on the circulation over the adjacent shelf, following a major precipitation event,
Hurricane Fran. Two model runs were conducted for the period from mid-August
through mid-September, 1996. One run used a discharge function based on daily
“observed” river inflows to the Bay. The second run employed the climatological data
used routinely in the model. Both runs employed realistic tidal forcing and surface winds
from a high-resolution atmospheric forecast model.

The primary cutflow following Hurricane Fran, based on the observed discharge
function, was concentrated over a period of just a few days, producing what was ex-
pected to be the maximum impact on the behavior of the plume. For comparison, ob-
servations of surface salinity acquired from a recently-developed airborne microwave
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radiometer are compared with model output fields in the near-field region of the plume

(£ ~20km from the mouth of the Bay). Salinity maps from the airborne radio_mcter
showed that the discharge function based on daily stream flow data p_roduced significant
improvements in characterizing the near-field region of the plume compared Lo the
monthly climatological outflow time history. The remote observations also revealed a sig-
nificant reduction in surface salinity near the mouth of the Bay between the 14th and the
19th of September 1996, which was not apparent in the model-generated salinity maps
for the same period. This discrepancy is attributed to the inherent difficulfies in specify-
ing the initial conditions at the mouth of the Bay.

Although direct verification of the model results could not be made bevond the
coverage provided by the airborne radiometer, the model-generated plume exhibited
structure and temporal behavior which are consistent with past observations. A separate
calculation of the Kelvin number from model output indicated that earth rotation
should be important in determining the orientation of the plume. The surface circulation
in the far-field region of the plume was strongly influenced by local winds and, to a
lesser, extent by the salinity gradients associated with the plume, according to the model
results. Also, the structure of the plume responded quickly to rapid changes in outflow
from the Bay, to wind forcing, or to both, on time scales of several days or less. A
sequence of model-generated salinity profiles along a line close to the axis of the plume
indicated that the strength of the halocline weakened, and that the depth of the halocline
decreased from roughly 10m near the mouth of the Bay to Sm or so at distances of

60—-75km offshore.

Keywords: Chesapeake Bay; plume; coastal ocean forecast system; discharge function;
Hurricane Fran: salinity; surface currents; salinity mapper; Kelvin number

1. INTRODUCTION

1.1. General

An ocean forecast system which includes a three-dimensional ocean
circulation model, together with a coupled atmospheric forecast model
and ocean data assimilation, is nearing completion as the first fully-
operational, real-time coastal ocean forecast system to be developed
for U.S. coastal waters (e.g., Kelly et al., 1997). This model, called the
Coastal Ocean Forecast System (COFS), has been used to make ex-
perimental forecasts of the state of the coastal ocean for a region off
the U.S. East Coast on a daily basis since 1993. The model domain
extends from 27° to 48°N, and from the East Coast out to 50°W,
covering an area of roughly 4 x 106 km?2. The model domain was cho-
sen to include the Gulf Stream because of its importance in influenc-
ing the circulation closer to the coast. Because of computational
considerations, the model’s horizontal resolution was selected to be
approximately 10km near the coast. Further offshore the resolution
decreases slightly. In the vertical, 18 layers were considered sufficient
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the mouth of CB by using a recently-d'eveloped Scanning Low-
Frequency Microwave Radiometer® (Goodberlet ez al., 1997).

Model plumes were generated first with monthly climatological out-
flows and then with the daily “observed’ outflows. The daily outflows
were estimated by combining stream flow data from the nine largest
rivers that feed into CB assuming no significant lags in following the
waters from HF through the bay system. The details concerning this
assumption are discussed in Section 6. Consequently, our results most
likely correspond to the maximum impact that could have occurred
on the shelf with respect to the outflow from CB following HF. As a re-
sult, we created a stringent test of the model’s response to discharge
from the Bay. In the model simulations, we considered three cases. The

first case corresponds to the time of maximum daily outflow from CB

following HF, but included no observed salinity data; the other two
cases correspond to times when observed salinities were available. In
all cases, salinity, surface and subsurface, and surface currents from
the model were used to depict the plume and its evolution.

The text is divided into seven sections which include the introduc-
tion (Section 1), a description of the ocean model (Section 2), a brief
description of the salinity mapper that was used to produce the salinity
maps on the 14th and the 20th of September 1996 (Section 3), an expla-
nation of the model runs and data acquisition procedures (Section 4),
the results (Section 5), a discussion of selected topics (Section 6),
and a summary and conclusions (Section 7).

1.2. Background

A number of observational (Subsection 1.2.1) and modeling (Sub-
section 1.2.2) studies provide useful background for this study and
are cited below.

1.2.1. Observational Studies

The CB is the largest estuary that drains into the Middle-Atlantic
Bight (Beardsley and Hart, 1978). To a first approximation, CB is a

*From this point on, we refer to the Scanning Low-Frequency Microwave
Radiometer as the salinity mapper.
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two-layer system with the upper layer discharging low salinity water
onto the shelf, while the lower layer takes in higher salinity water from
the adjacent shelf. Near the bottom, observations (Boicourt, 1973)
indicate that CB takes in water over an alongshore band of the order
of 30km in width. The distribution of salinity within CB tends to be
oblique with higher salinities on the eastern side and lower salinities on
the western side, consistent with the fact that most of the “freshwater”
discharge originates on the western side of the Bay. In a recent study
on the effects of bathymetry in determining the transport of water and
salt across the entrance of CB, Valle-Levinson and Lwiza (1995) found
that the depth-averaged mean longitudinal flow into the Bay occurred
over the deep navigational channels, and outflow occurred over the
shoals on either side of the channels. Near the mouth of the Bay,
hydrographic data indicate that the vertical stratification is primarily
controlled by salinity (Boicourt, 1973), and, as a result, the horizontal
circulation is likewise expected to be primarily determined by the dis-
tribution of salinity. The low salinity core of the plume which emanates
from the mouth of the bay tends to overlie the deep channel located
on the south side of the bay mouth that extends offshore and turns
to the southeast (Holderied and Valle-Levinson, 1997). The buoyant
plume of low salinity water is deflected south past Cape Henry by
the Coriolis force and forms a southward-flowing coastal current.
According to Boicourt (1973), this coastal current has the character-
istics of a quasi-geostrophic jet. The area covered by the plume expands
and contracts in direct response to discharge from the Bay (e.g.,
Thomas, 1981).

Three of the primary factors that determine the outflow from CB are
river discharge or buoyancy forcing, wind forcing, and tidal recti-
fication over the shoal which separates the two channels located at
opposite sides of the bay entrance (Valle-Levinson ef al., 1997). The
circulation of the shelf waters off the mouth of the Bay varies with
changes in discharge from the Bay, the local winds, and to a lesser
extent, stratification (Norcross and Stanley, 1967). According to
Goodrich (1987), both gravitational and meteorological forcing con-
tribute to the nontidal exchange across the mouth of CB. Under typi-
cal conditions, the CB plume extends offshore several tens of km or
more, The plume may extend southward along the coast as far south
as Cape Hatteras, particularly after extreme events such as Tropical

S R T




o R A R R s e

316 L. C. BREAKER et al.

Storm Agnes (Boicourt, 1973). At the offshore boﬁnda'ry of the

plume, a sharp salinity front often occurs. Tidal variability associated
with the outflow from CB is significant and is primarily due to the
semidiurnal constituent (e.g., Valle-Levinson et al., 1997; Beardsley
and Hart, 1978). According to Ruzecki et al. (1976), the plume ex-
pands and contracts on tidal time scales in accordance with the ebb
and flood tides, respectively. Following Tropical Storm Agnes, the dis-
tribution of flood waters on the shelf indicated that pulses of low-
salinity water left the Bay during the ebb tide and were separated from
one another by intrusions of high-salinity shelf water on the flood tide
(Kuo et al., 1976). ;

The location of the plume is also affected by the local winds and
the circulation on the shelf. Winds from the southwest tend to dis-
perse and extend the plume, especially during ebb tide (Munday and
Fedosh, 1981), and allow it to move further offshore before turning
south along the coast (Holderied and Valle-Levinson, 1997). Winds
from the north-northeast act to constrain the plume by keeping it close
to the coast south of the mouth. Consistent with the results of Munday
and Fedosh, Boicourt e al. (1987) found that downwelling-favorable

‘winds suppressed the seaward excursion of the plume near the mouth,

but intensified the coastal jet further downstream. On the other hand,
upwelling-favorable winds caused the plume to spread seaward away
from the coast. Increased stratification may also extend the influence
of bay waters further offshore (Boicourt, 1981).

1.2.2. Modeling Studies

Using a simple one layer model, Beardsley and Hart (1978) found that
CB draws in water from a relatively wide alongshore band, of the
order of 30 km, in general agreement with the observations of Boicourt
(1973). In a series of modeling studies which employed a three-
dimensional, primitive equation model, Chao and Boicourt (1986),
and Chao (1988a and b; 1990), showed how the winds, tides, and river
discharge, plus other factors affect the local circulation for mid-
latitude estuarine/shelf environments such as CB. Chao and Boicourt
(1986) showed that plume-induced circulations derive their energy
primarily from the release of potential energy associated with river
discharge which produces pressure gradients that spread the plume
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seaward. The Coriolis force was apparent in deflecting both the plume
itself to the right, as well as the local wind-driven surface currents.
They also found that the loss of mass in the upper layer of the plume
through detrainment should be taken into account in order to generate
plumes that are more realistic further offshore.

Chao (1988a) showed the importance of lateral asymmetries in the
circulation of a river-forced estuary. He further presented a classifica-
tion scheme for river-forced plumes that relate the Froude number to
a dimensionless parameter indicating the amount of dissipation that
occurs. Chao (1988b) showed that the primary effect of wind forcing
on estuarine plumes over the shelf 1s to produce surface Ekman drift.
For downwelling-favorable winds, an elongated coastal jet occurs in
the downwind direction. For cross-shelf winds, the nearshore Ekman
drift is retarded by sea level setup or setdown. Chao (1990) demon-
strated that a three-dimensional model which included forcing from
the semidiurnal tide resulted in a residual circulation that included
two counter-rotating eddies off the mouth of the estuary. Although
these eddies enhanced plume growth in the near-field, they retarded
the development of the coastal jet in the far-field.

Wang and Kravitz (1980) showed that the initial injection speed of
waters discharged from an estuary onto the shelf has only a small effect
on the circulation induced within the plume itself. This conclusion was
further supported by the model studies of Chao and Boicourt (1986).
Zhang et al. (1987) used an analytical model together with observations
to examine the behavior of three different river plumes including the CB
plume. Unlike many other studies, Zhang et al., emphasized the impor-
tance of the prevailing alongshore flow in determining the direction-
ality of the plumes. For CB, their model results indicated that bottom
steepness is an important factor in influencing flow characteristics of
the plume beyond the mouth of the Bay.

Using a layer model, Garvine (1987) demonstrated that plumes
which are affected by earth rotation initially develop fronts along their
outer boundary. As further development takes place, the plume turns
toward the coast under the influence of the Coriolis effect, and, final-
ly, a coastal current develops further downstream. Using a primitive
equation model, Weaver and Hsieh (1987) found that when fresh
water was released from a mid-latitude estuary onto the continental
shelf, a first baroclinic-mode Kelvin wave propagated into the estuary,
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and along the continental shelf in the direction of a coastal trapped
wave. Numerical techniques developed by O’Donnell (1990) were
employed in a model to investigate the unsteady behavior of small-
scale river plumes. He found that tidally-reversing crossflows diluted
the plume through vertical mixing immediately following high and low
tides. '

Oey and Mellor (1993) examined the evolution and variability of an
estuarine plume, and its associated coastal front and coastal current.
The plume and front were found to be unsteady with a period of 5—
10days. The plume pulsated and coastal currents propagated down
the coast intermittently. Wheless and Klinck (1995) examined the
evolution of buoyancy-driven flow over a sloping bottom using a two-
dimensional, vertically-averaged numerical model. They found that
the interaction of horizontal density gradients and a sloping bottom
led to vortex stretching, cross-isobath flow, and the development of
a cyclonic gyre further offshore, following outflow from a coastal
estuary of dense, winter-like waters from a point source. Using the
Princeton Ocean Model (Blumberg and Mellor, 1987) with a horizon-
tal resolution of 0.25km, Wheless and Valle-Levinson (1996), ex-
amined the exchange between an estuary and a sloping shelf through a
narrow inlet. Buoyancy forcing and the semidiurnal tides were in-
cluded. A radially spreading buoyant plume was formed over the shelf
with strong anticyclonic flow along the front. Two tidally-induced
asymmetric eddies were formed, one on each side of the inlet, which
strongly influenced the circulation locally, reminiscent of the results
obtained by Chao (1990).

The modeling studies referenced above have provided guidance for
the present study. However, this study is unique because it incorpo-
rates all of the primary forcing elements that affect the behavior of
the CB plume including the tides, winds, and river discharge within the
framework of a realistic ocean forecast system. .

2. THE COASTAL OCEAN FORECAST SYSTEM

The Coastal Ocean Forecast System is being developed by the National
Weather Service, the National Ocean Service, and Princeton University
to provide a regional ocean forecasting capability for U.S. coastal
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waters on an operational basis. It is based on the Princeton Ocean
Model, a three-dimensional ocean circulation model (e.g., Blumberg
and Mellor, 1987). This model is based on the primitive equations, em-
ploys a free upper surface, and has a second order turbulent closure
submodel to parameterize mixing (Mellor and Yamada, 1982). COFS
at the present time produces 24-hour forecasts of temperature, salinity,
the three components of velocity, and surface elevation. COFS is cou-
pled to the National Centers for Environmental Prediction’s (NCEP’s)
high resolution ETA regional atmospheric forecast model (Black,
1994) which provides surface fluxes of heat, moisture and momentum
at three-hour intervals. Coupling between the atmosphere and ocean is
one-way which has generally proven to be satisfactory for real-time
forecasting.” The model is reinitialized every 24 hours with the pre-
vious day’s forecast. The U.S. Navy’s Generalized Digital Environ-
mental Model (GDEM; Teague et al., 1990) is used to provide the
model’s initial conditions for temperature and salinity when it is initial-
ly spun up from rest. The current version of COFS includes astronomi-
cal tidal forcing along the open boundaries and body forcing within
the model domain for six tidal constituents (Chen and Mellor, 1998).
The model is driven along its open boundaries with climatological esti-
mates of temperature and salinity from GDEM, and constant volume
transport which is specified separately.

Fresh water inputs are specified for 16 rivers, bays and estuaries
along the U.S. East Coast and are based on monthly climatological
data (Blumberg and Grehl, 1987; Koutitonsky and Bugden, 1991). In
the model, the outflow from CB (and the other rivers, bays and
estuaries within the model domain) is specified as a volume flux from a
single grid point (i.e., a point source) located at the mouth of the Bay
at 37.02°N, 76.05°W (P. Chen, 1998, personal communication). A sa-
linity of zero psu and an injection velocity of zero are initially assign-
ed to the outflow.* This fresh water is mixed with saline water from
the previous time step in the surrounding grid cell to produce water

3One exception is for hurricanes, and, as a result, two-way coupling may be
implemented in the future.

*The assignment of zero velocity to the water discharged from CB is consistent with
the results of Wang and Kravitz (1980) and Chao and Boicourt (1986) who both
indicated the importance of the potential energy associated with the plume, and not its
kinetic energy in influencing its behavior over the shelf.
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of lower salinity. The lower salinity is calculated according to

Si(x,3,2) = Se—1(x,9,2) — Si1(x,y,2) % VF % (2.0 + D;/H
+ D1 /H) * (2.0 % AT) JA(x,y) * D;

where S is the salinity at time steps ¢ and ¢ — 1 for location x, y, and z,
V'F, is the volume flux in m?/sec at time ¢, D; is the ith depth, H is
the bottom depth, AT is the internal model time step, and A is the area
of one grid cell. The outflow is distributed vertically so as to provide
a linear decrease with depth. This is accounted for above by the term
(2.0+D;/H + D; 1/H). If the mean outflow, Q,,, is assigned to the
middle of the volume, then the flow at the surface is approximately
2% Q,, and the flow at the bottom is approximately equal to zero.
The model employs a terrain-following sigma coordinate system in
the vertical, and a curvilinear grid in the horizontal. The model has
18 layers with increased vertical resolution in the mixed layer and
the upper thermocline. The spatial resolution increases from 20 km off-

shore to 10km near the coast. The coastal boundary corresponds to -

the 10m isobath. A no-slip boundary condition is employed at the
coast which produces a boundary layer whose thickness is less than
one half the distance between grid points. Because the Arakawa C
staggered grid system is used in the model (O’Connor, 1991), the velo-
city components are zero on the coastal boundary, and the nearest non-
zero velocities are one-half grid cell away from the coast. The model
bathymetry is based on the U.S. Navy’s digital bathymetric database
with 5-minute resolution (DBDB-5) and 15-second resolution digital
data from the National Ocean Service over the shelf. Finally, ocean
data assimilation is underway and uses in situ SSTs and satellite
retrievals of SST from the Advanced Very High Resolution Radio-
meter. Ongoing evaluations of COFS which include data assimilation
have shown significant improvement in model performance over
model runs without data assimilation (Kelley et al., 1997).

3. THE SCANNING LOW-FREQUENCY
MICROWAVE RADIOMETER

The ability to measure surface salinity over the ocean can be traced

back to at least 1977 when Blume et al. (1978) estimated sea surface
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salinity from microwave measurements of brightness temperature
from an airborne radiometer. Kendall (1981) used an L-band micro-
wave radiometer aboard an aircraft to measure surface salinity in the
vicinity of the CB plume as part of the Superflux IT experiment.

Airborne measurements of surface salinity off the mouth of CB and
Virginia Beach have been made on several occasions during the past
two years using a recently-developed salinity mapper called the Scan-
ning Low-Frequency Microwave Radiometer. The salinity mapper is
an L-band passive microwave radiometer operating at a frequency of
1.413gHz. The salinity mapper also has a dual-channel infrared
radiometer to measure SST which is also required in the measurement
of sea surface salinity. For a more detailed description of this instru-
ment and the factors which affect the measurement of sea surface sa-
linity, see Goodberlet et al. (1997). Although the instrument’s sensitivity
to changes in salinity is somewhat limited, it can provide an accuracy
of 1 psu, or better, in most coastal areas. The mapper is mounted on a
small single-engine aircraft and has the capability to produce maps of
surface salinity at the rate of 1000 km” per hour with a spatial resolu-
tion of 1 km for an aircraft speed of 50 my/sec operating at an altitude
of 2.5km. Recent applications are described in Miller et al. (1998).

4. THE EXPERIMENT

Hurricane Fran produced an extreme rainfall event which resulted in
greatly increased outflow of low salinity water from the mouth of CB,
Data from the salinity mapper were available on two dates (September
14 and 20, 1996) following HF which provided a means of validating
our model results at least over the near-field region of the plume do-
main. We chose the simplest scenario for generating outflows from
the Bay which were computed from August 15—September 20, 1996 in
response to the river inflows that took place before, during, and fol-
lowing HF. These outflows were generated by summing up the observed
streamflows from the U.S. Geological Survey river gages for the nine
largest rivers that flow into CB. These account for approximately 93
percent of the surface input into CB. An additional 7 percent was
included to account for surface water input from all other sources. Final-
ly, ground water entering the Bay was accounted for by taking 10 percent
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of the total surface input and adding it to the total daily surface
water input to CB. The resulting discharge function does not take
into account the time required for the riverine waters to circulate
through the bay system. As a result, the discharge is treated as a single
pulse in the outflow which occurs over a period of just a few days in early
September following the passage of HF. A more realistic discharge func-
tion would have distributed the outflow volume over a much longer
period. The resulting discharge function created conditions that were ex-
pected to have maximum impact on the model-generated plume. Figure
1 shows the discharge function based on daily values of stream flow
together with the discharge time history based on climatology. A volume
of water more than ten times greater than the climatological outflow for
September was discharged between 6 and 10 September, 1996.

Two model runs were conducted: a control run which used outflows
based on the existing climatological data, and a separate hindcast run
which used the daily outflows from the discharge function depicted in
Figure 1. Both runs were initiated on August 15, 1996, approximately
30 days prior to the period of interest. The model output for each date is
valid at 2400 UTC on the day in question. Figure 2 shows the study area
and the model grid point locations for all grid points in water depths of
10m or greater. Surface forcing from the ETA regional atmospheric
forecast model was identical for both COFS runs. Three dates were con-
sidered in generating plumes of low salinity water off the mouth of
CB from COFS: September 8, 14, 20, 1996. The first date corresponds
to the time of maximum outflow from CB following HF (Fig. 1 — no
corresponding salinity map was available for this date), and the last
two dates correspond to times when salinity maps were available.

The two variables of primary interest in this study are salinity and
velocity (x and y components) in the top layer of the model.” The exact
depth of these “surface” variables corresponds to the mid-depth of the
top layer in the model. This layer depth, in turn, depends on bottom
depth because of the sigma coordinate system which is used. However,
near the mouth of CB, it is always less than one meter. To suppress the
influence of the tides, the salinities and currents have been daily-
averaged.

SSatellite maps of sea surface temperature (SST) were also examined, but the gradients
in SST in the area of interest were less than 0.05°C/km.
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The salinity data used in this study were acquired with an airborne
salinity mapper on two separate dates, September 14th between 1845
and 2149 UTC, and September 20th between 1910 and 2207 UTC,
1996. These data were collected aboard a DeHavilland Beaver aircraft
which is owned and operated by the Virginia Institute of Marine
Science. The maps of surface salinity produced by this instrument are
shown in Figure 3. They were constructed from 10 east-west parallel
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FIGURE 3 Maps of surface salinity obtained from the Scanning Low-Frequency
Microwave Radiometer for September 14 (upper panel) and September 20 (lower panel),
1996. “CC” refers to Cape Charles located at the north end of the entrance to
Chesapeake Bay, and “CH” refers to Cape Henry located at the south end of
Chesapeake Bay. The distance from Cape Charles to Cape Henry is approximately
15km. Each pixel represents a one km? area. (See Color Plate II).
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flight lines flown at an altitude of approximately 2.6 km. The area
covered was about 2500 km? at a spatial resolution on the ground of

approximately 1km.

5. RESULTS

5.1. Plume Characteristics

The results of the model runs for surface salinity, using the cli-

matological outflows (control runs), and the daily outflows (hindcasts)

are shown in Figures 4, 5 and 6 for September 8, 14, and 198,

respectively. The surface salinities are shown in the top panel for the

control runs and in the bottom panel for the hindcasts, for each date.

Because of the relatively large discharge that was specified for the pe-

riod between 6 and 10 September, a significant impact on plume struc-

ture for the hindcast runs was anticipated. Indeed, in the immediate
vicinity of the bay mouth, salinities as low as 10 psu were predicted by
the model using the daily discharge function, whereas, the control run
only forecasted salinities as low as 28 psu in the same area (Fig. 4). At
this early stage, the impact of the anomalous outflow extended out to
approximately 50 km offshore. Almost a week later on September 14th,
major differences between the two runs are apparent. Salinities as low
as 27 psu exited the Bay in the hindcast, while the lowest salinities for
waters leaving the Bay in the control run were 31 psu (Fig. 5). Perhaps
even more significant is the spatial extent of the low-salinity waters as-
sociated with the hindcast which extend almost 60 km offshore out to
the position of the 36 psu isopleth, It is important to note that, although
the location of the 36 psu isopleth in the model lies this close to shore,
in reality, waters with salinities in this range are located considerably
further offshore, usually within the Gulf Stream. The reason for this
intrusion of higher salinity water off the mouth of CB is due to the fact
that the model-generated Gulf Stream tends to follow the bathymetry
around Cape Hatteras for a short distance, creating a fictitious meander
just north and east of the Cape, rather than separating correctly and

The model output for September 19th was used since it was actually closer to the time
when the salinity observations were acquired.

L83

3?'60 .. e
37.40 |
37.20

37.00 |~

Latitude (°N)

36.80 |

36.60

36:40 [f 00

36,20 EESEH RIS |

—76.50  -76.30 -76

37.60 v
37.40 [i e
37.20

37.00 [P

Latitude (°N)

36.80 |0 il

660 | |  Hindcast .
| Sept.8, 1996 |

3640 |

36.20 L— sk
7650 7630  76.1

FIGURE 4 Map of surface sali
for September 8, 1996. The top
monthly climatological outflows
hypothetical discharge function sl




| Letal

| iproximately 2.6km. The area
| al resolution on the ground of

 surface salinity, using the cli-
1 the daily outflows (hindcasts)
si September 8, 14, and 198,

i
' shown in the top panel for the -

for the hindcasts, for each date.
ge that was specified for the pe-
enificant impact on plume struc-
sated. Indeed, in the immediate
' jow as 10 psu were predicted by
nction, whereas, the control run
' psu in the same area (Fig. 4). At
;malous outflow extended out to
+ a week later on September 14th,
15 are apparent. Salinities as low
1st, while the lowest salinities for
run were 31 psu (Fig. 5). Perhaps
et of the low-salinity waters as-
:nd almost 60 km offshore out to
; important to note that, although
the model lies this close to shore,
is range are located considerably
Sulf Stream. The reason for this
:he mouth of CB is due to the fact
“m tends to follow the bathymetry
ance, creating a fictitious meander
her than separating correctly and

w-ed since it was actually closer to the time

CHESAPEAKE BAY PLUME 327

37,60 [Tt r LErE
37.40 | ?
; .>35
37.20. oy
z N
w 87.00 |5 1 2N
3
£, P & N\
e | 35.80 girs e R e i P a4 N R I D o v 36
| Control Run s T L ~
3660 [l gant 5, 1996 [ T ‘
a640 | e ~. | >36
36.20 b—e ¥ = 30

-76.50 -76.30 -76.10 7590 -7570 —7550 -75.30 -75.10
Longitude (°W)

37.60

37.20 :IJ

37.40 '§ gi A ‘5“’

z e
o
gl
':";: i
— 36.80 |
36.60 | Hindcast | @ 35
601 | Sept.8,1996 | Nim Vol o
36.40 F : :
—76. -
6.5 76.30 -76.10 -7590 -75.70 -7550 -7530 -75.10
Longitude (°W)

F 5z
f;?sli;;ﬁmt‘berhgagg{;fs sx}lflge;c&salmnyl pl}'loduceg by the Coastal Ocean Forecast System
D > 1996 p panel shows the control run for the del whi
monthly climatological outflows for CB et
i : , wh
hypothetical discharge function shown in Figur: rle.as P TAIS (e, e




328 L. C. BREAKER et al.
37.60 S
37.40 [ 3 35.5
1;3(5’.
o ) 355
a7.20 R 1z
= 37.00 [ = 355
7K
£ T ~—i
S 680 | T
| Control Run Mo
3660 | | 5ept. 14,1996 |
340 = (
— R, 1036
7650 7630 -76.10 —7590 7570 —7550 7530  —75.10
Longitude (°W)
7
37.60 o
37.40 RS T as
37.20 [ \/’/
é’ 37.00 T N
2 — i L 34
T 680 ’3 - k\ f\:_ 34
D o 35
& N == \ —
36. ,’ ‘j,\-——// _____ :
/ ~— A
36.40 = / J‘U E
- >36 -
i SOURTEE - -/ | 30
o600 [PREEEIETETE
76,50  ~76.30 —75.90 —7570 -7550 -7530  -75.10

Longitude (°W)

FIGURE 5 Same as Figure 4 except that the date is September 14, 1996. The arca
enclosed by the box outlined with light thick lines is the area covered by the salinity map
for the same date displayed in Figure 3 (upper panel).

CHI

z
o
o
=
3
|
= Control Run
3660 | | Sept. 19, 1996
a0 [
37.40
37.20 [T
z
o 37.00
=
E
= >
S 3680
i Hindcast
36.80 } | Sept. 19, 1996
36.40 :
7650 7630 7

FIGURE 6 Same as Figure
enclosed by the box outlined w
for the same date presented in




Ysasls .

e —T
; J >35.51
— ] o . -
E %*--.-.,.::. ﬁﬂ ~r /

35.5

355

35.5

36

- =TRT0
W)

—75.50

—75.30

-75.10

/

d

w
Q
| gy

35

Y

>
/

34
/z
—

34

35

36

;i
JIINA
f%&:fw

v

=536

30

-75.50

-75.30

-75.10

> date is September 14, 1996. The area
:s is the area covered by the salinity map

panel).

CHESAPEAKE BAY PLUME 329

37.60 o7

37.40 | =

37.20

37.00 ([~

Latitude (°N)

36.80 |

36.60

: Control Run =

| Sept. 19,1996 |

B[

5.510

36 7

- ~36 1

36.20 —
=76.50

-76.30 -76.10  -75.90
Longitude (°W)

—75.70

—75.50 —75.30 -75.10

37.60

37.40 |

87.20 FEw

37.00 |

Latitude (°N)

36.60

36.40

36.80 [

| Sept. 19, 1996 |

Hindcast

36.20 SEEEE

76

.50 —76.30

~76.10 ~75.90 -75.70
Longitude (*W)

—75.50

~75.30 —75.10

FIGURE 6 Same as Figure 5 except that the date is September 19, 1996. The area
enclosed by the box outlined with light thick lines is the area covered by the salinity map
for the same date presented in Figure 3 (lower panel).




B
E
i
1

330 L. C. BREAKER et al.

flowing directly offshore at this location. Although this problem is
apparently common to other ocean circulation models (Dengg et al.,
1996), it has recently been corrected to some extent in COFS through
the assimilation of satellite-derived SSTs (Kelley et al., 1997).

Although the plume initially follows the coast south of Cape Henry,
further offshore it turns cyclonically to the northeast. This curvature,
which is evident in both runs, is particularly apparent in the hindcast.
A weak low-pressure system moved through the area on 12 September
with wind speeds of up to 14 m/sec generally from the south and may
have contributed to a greater offshore transport of water and cyclonic
rotation of the plume. The axis of the plume in the hindcast extends
south of Cape Henry to approximately 36.6°N and is located rough-
ly 10km offshore. According to the observations of Boicourt ef al.
(1987) and the model results of Chao (1988b), winds from the south
(i.e., upwelling-favorable) cause the plume to spread seaward due to
the influence of Ekman transport. These results are also in general
agreement with past observations in this area acquired during periods
of high seasonal outflow from the Bay (Ruzecki, 1981). Also, the ad-
ditional waters which were discharged onto the shelf in the hindcast,
sharply increased the salinity gradients in several locations favoring
frontal intensification, i.e., frontogenesis, locally. Comparisons of the
model-generated salinities near Cape Henry just inside the Bay and
near the coast south of Cape Henry (Fig. 5), with observed salinities
from the salinity mapper, show that the salinities from the hindcast
(~26psu) are much closer to the observed salinities (< 20 psu) than
are the salinities from the control run in this area (~ 31 psu). Also, the
stronger gradients indicated in the hindcast appear to be generally
more consistent with the gradients observed in the data from the sa-
linity mapper than are the gradients produced in the control run. The
actual gradients from the salinity mapper for the 14th were as high
as 1.4 psu/km northeast of Cape Henry compared to gradients as high
as 0.5 psu/km from the model hindcast in the same area. Because the
spatial resolution of the model is approximately 10km in this region
(Fig. 2), the strength of the gradients from the model were not ex-
pected to match the gradients estimated from the salinity mapper which
has a resolution in the neighborhood of 1km.

The shape of the plume in the hindcast changed from the 14th to the
19th (Fig. 6), and the offshore extent was somewhat reduced. The axis
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of the plume, rather than turning cyclonically, more-or-less parallels
the coast. The plume structure for the control run indicates con-
tractions particularly for isopleths between 32 and 35 psu where forc-
ing due to volume flux at the mouth was maintained at a constant level
(Fig. 1). Thus, based on past observations and model results, the effects
of surface wind forcing should also be considered. On September
17th, a second, deeper low-pressure system moved through the area
with maximum wind speeds of at least 17 m/sec which were initially
from the south and then shifted to the northwest on the 18th. Because
the wind direction changed significantly during the passage of this low-
pressure system, the net effect of the winds is not intuitively clear.
However, the model results suggest that the overall effect of the winds
may have been to constrain the development of the plume at least
between the 14th and 19th of September. Boicourt et al. (1987) found
that northerly winds suppressed the seaward development of the
plume close to the mouth of CB, whereas, southerly winds caused the
plume to spread seaward. Our results are generally consistent with this
interpretation. A comparison of the salinity maps from the salinity
mapper with the model-generated salinity maps for the 19th again
shows that the salinities from the hindcast near Cape Henry just
inside the Bay and further south along the coast are much closer to the
observed salinities than are the salinities from the control run. Neither
the salinities of the hindcasts, nor those of the control runs changed
appreciably from the 14th through the 19th near the bay mouth, while
the observed salinities near Cape Henry were significantly lower on the
19th (10—15psu) than they were on the 14th (15—20psu). Observed
salinities on the 19th are not only lower near Cape Henry, but are at
least 5 psu lower offshore over most of the region that was mapped.
These lower salinities on the 19th may reflect the increasing influence
of the freshwater outflow which resulted from HF. This decrease in
surface salinity between the 14th and the 19th is not obvious in the
model hindcast runs, even though the hypothetical discharge function
shows a slight increase in outflow (from ~3400 to ~5400 m*/sec) be-
tween 17th and 19th September. On the 19th, the low salinity plume ex-
tends much further south along the coast in the hindcast than it does
in the control run (~40 km further south for the 34 psu isopleth), and,
as a result, is more consistent with the observed data. As on the 14th,
the stronger gradients in the hindcast compared to the control run on
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the 19th are again in better agreement with the salinity gradients in the
observed data from the salinity mapper. On this occasion, actual gra-
dients from the salinity mapper northeast of Cape Henry are of the
order of 1.4psu/km, and from the model are again only as high as
0.5 psu/km.

5.2. Model-generated Currents

Model-generated surface currents for the 8th, 14th, and 19th of
September are shown in Figures 7, 8 and 9, respectively. As indicated
earlier, these currents were daily-averaged to reduce the impact of the
astronomical tides. For each date, the panel in the upper left shows the
results from the control run, the panel in the upper right, the results
from the hindcast, and below, the vector difference (hindcast minus
control). As stated in Section 2, the coastal boundary for the velocity
components is located approximately 5km seaward of the coastal
boundary in the model, ie., the 10meter isobath. The currents for
September 8th (Fig. 7) are on the order of 30 cm/sec and clearly direct-
ed to the northeast for both model runs. Winds at the C-Man station
located approximately 30 km off the mouth of the Bay were consistently
from the southwest (200—210°) for most of the day and, thus, primarily
responsible for producing the observed patterns of flow in the model,
allowing for 10°—15° of rotation to the right due to the Coriolis force.
The difference pattern indicates the impact of outflow from the Bay at
the three successive grid points nearest the mouth with a maximum
speed of 25 cm/sec directed to the southeast. On September 14th (Fig.
8), the model-generated currents generally flow to the southeast with
speeds of 15—30cm/sec in response to winds which were consistently
from the northwest. South of about 37°N, the direction of surface flow
changes more to the south reflecting the influence of the circulation
associated with the plume itself. The difference plot reveals four current
vectors which overlie the area where the salinity gradient is a maximum.
Although the direction of flow here may be unexpected, it is probably
due to the fact that the model-generated plume does not lie against the
coast, but is located further offshore, allowing return flow to develop
along its southern flank. The model-produced currents on the 19th of
September (Fig. 9) indicate surface flow to the south at speeds of 15—
30 cm/sec. Again, the primary influence appears to be from the winds
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which were from the north-northwest, allowing for slight, Coriolis-
induced rotation. The difference map again shows several current vec-
- tors whose locations and direction suggest the influence of the strong
salinity gradients associated with the plume. By differencing the control
run and the hindcast, we have removed those elements which are com-
mon to both fields, which certainly include the effects of wind forcing,

but have also removed any effects due to salinity forcing which were .

common to both fields. Thus, our attempt to separate the effects of wind
and salinity forcing are most likely not complete. In any case, the
importance of wind forcing on the surface flow is clearly apparent.
These results are in good agreement with the effects of wind forcing
contained in the observational results of Boicourt et al. (1987) and in
the model results obtained by Chao (1986b). However, the impact of
salinity forcing due to the strong salinity gradients in the region sur-
rounding the plume is also evident, but not as obvious as the impact of
wind forcing.

5.3. Subsurface Salinities from the Model

The primary emphasis so far has been on the surface manifestation of
the low salinity plume that emanates from CB. Here, we examine the
subsurface structure of the low salinity plume by displaying a sequence
of 8 vertical profiles of salinity from COFS along a line of model grid
points that is closely aligned with the axis of the plume (Fig. 10).

Profile sequences for the 14th and 20th of September are displayed

for both the hindcast (solid) and the control run (dotted). The average
distance between profiles is 10.6 km, and the profile furthest offshore
(profile 8) is approximately 75km from the mouth of the Bay.
Although the individual profiles vary significantly, there is a tendency
for the strength of the halocline to weaken and the depth of the
halocline to become shallower as we proceed offshore. The location of
the halocline provides an indication of the depth that effectively
separates the plume from the waters below. Based on all of the profiles
shown (both dates), this depth appears to be a maximum of about
10 m near the mouth, but further offshore generally shoals to a depth
of 5meters or less. Detrainment or the loss of mass from the plume to
the waters below may contribute to the gradual decrease in plume
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thickness proceeding offshore (Chao and Boicourt, 1986). These
model-generated halocline depths agree with plume depths inferred
from in situ salinity data acquired beyond the mouth by Ruzecki
(1981) where plume thicknesses varied from 5—8 m. On the 20th, the
three profiles closest to the mouth indicate much lower salinities down
to 10 m than the corresponding profiles on the 14th and may reflect the
influence of the additional fresh water discharge that is indicated in
Figure 1 between the 17th and 19th of September. However, further
offshore, profiles on the 20th indicate slightly higher salinities within
the plume at least out to the last two profiles. Major differences occur
in the profiles between the hindcasts and the control runs for both
dates near the mouth where the influence of the higher discharge as-
sociated with the hindcast is apparent, but these differences decrease
further offshore and almost disappear for profiles 7 and 8.

Overall, the results indicate that (1) COFS has reproduced essen-
tial features associated with the CB plume, including its preferred
location, length scales, evolution, and variability particularly for cases
where the plume lies offshore in response to southerly winds, (2)
major differences in plume structure occur using the daily versus the
climatological discharge functions, including stronger salinity gradi-
ents along the periphery of the plume, (3) the structure of the plume
responds quickly to rapid changes in volume flux at the mouth of the
Bay and/or to changes in surface wind forcing, with time scales of
several days or less, (4) a major reduction in surface salinity occurred
in the immediate vicinity of the mouth of CB between the 14th and
19th of September, based on observations from the salinity mapper
which were not reflected in the model results, (5) the effect of salinity
forcing on the model-produced surface currents, although noticeable,
was less important than the effect of wind forcing, and (6), the strength
of the model’s halocline tended to weaken proceeding offshore, and
that the depth of the halocline decreased from roughly 10m near the
mouth of the Bay to 5m or so at distances of 60—75km offshore.

6. DISCUSSION

In this section we discuss several issues directly related to the results
which were presented earlier. These topics include the specification of
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the initial conditions at the mouth of CB, estimating advective time
scales for the Bay, and finally, using the Kelvin number to infer the
importance of earth rotation in deflecting the plume.

6.1. Initial Conditions at the Mouth of the Bay

From results presented in the last section, the model-generated
salinities in the near-field region of the plume for the 14th and 19th
of September were not necessarily consistent with the corresponding
maps of surface salinity from the salinity mapper. Near-field salinities
from the model hindcasts where the daily discharge function was used
differed only slightly for the two dates, whereas the results from the
salinity mapper showed that the near-fleld salinities had actually de-
creased significantly (~ —5 psu) over the same time period. The plume

. structures which were generated in the various model runs may depart

from reality for a number of reasons.

First, because we used a discharge function which treated the out-
flows that resulted from HF as a single pulse rather than including
lags for each inflow component, the outflow from CB that was specified
may not be realistic. In order to construct a realistic discharge function,
it would be necessary to run a 3-D circulation model for CB with ini-
tial conditions, surface forcing, and boundary conditions appropriate
for the period surrounding HF. Such a model could be used to deter-
mine the time required for riverine waters entering the Bay at various
locations to travel through the bay system until they arrived at the
mouth where they would be combined to produce a realistic outflow.

Second, the volume flux was specified for only one grid point due to
the lack of spatial resolution near the entrance of the Bay. Thus, the
bay outflow is introduced into the model domain as a point source,
when in reality, the source should be distributed across the entire
mouth. By employing a higher-resolution distributed source across the
mouth, we could have prescribed lower salinities at the south end, and
higher salinities at the north end, in accordance with the recent ob-
servations of Holderied and Valle-Levinson (1997), for example. In the
vertical, a simple one-layer approximation that provided a linear
decrease in transport with depth was used to distribute the outflow.
Based on the observations of Valle-Levinson et al. (1997), a two-layer
formulation with waters of lower salinity leaving the Bay in the upper
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layer and waters of higher salinity entering the Bay in the lower layer
would have been much closer to reality.

Third, we assigned a value of 0 psu to the volume flux from CB in
our model runs, and even with a value this low, results near the mouth
indicate that the model-generated salinities were too high, particularly
for the 14th and the 19th of September. Clearly, the assignment of ap-
propriate values for salinity in the near-field is problematic. Finally,
although no injection velocity was assigned to the volume fluxes which
were specified in our model runs, previous work by Wang and Kravitz
(1980) and Chao and Boicourt (1986) indicates it is the potential energy
associated with the plume and not the kinetic energy that is most
important in influencing the circulation which is induced by the dls—
charge of low salinity water onto the shelf.

Further offshore in the far-field region where realistic atmospheric
forcing and other environmental factors could be incorporated, the
overall position and orientation of the plume appears to be in reason-
able agreement with past observations of this feature (e.g., Munday
and Fedosh, 1981; Boicourt et al., 1987). However, on closer inspec-
tion, several factors affect the geometry of the model-generated plume
which may cause the exact position and orientation of this feature to
be unrealistic. First, the origin for the model where the volume flux is
specified is the single grid point located at 37.02 N, 76.05'W, a distance
of Skm west-northwest of the actual bay mouth. Although this is a
relatively small distance, it alters the path taken by the discharge out
of the Bay and onto the shelf, resulting in a small but noticeable
difference in the preferred location of the plume at greater distances
away from the mouth. Second, the coastal boundary in the model is
the 10 m isobath and not the coast itself, a factor which prevents the
plume from “hugging” the coast, as it often does, particularly under
the influence of winds from the north. According to Chao (1990) on
summarizing the results of Boicourt et al. (1987), there appear to be
two dominant patterns that characterize the CB plume. Under the
influence of winds from the north, the seaward extension of the plume
is suppressed and it tends to lie next to the coast south of Cape Henry
with an intensified coastal jet that follows the coast further down
stream. Under the influence of winds from the south, the plume tends
to spread seaward with its axis lying further offshore and oriented in a
generally southwesterly direction. Based on the ability of COFS to
generate plumes for each of the two situations described by Chao, it
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appears that the model will produce more realistic plume behavior
when surface winds are from the southern sector. This is true because
the coastal boundary in the model is located at the 10 m isobath in-
stead of at the coast itself, a constraint which effectively prevents the
plume from lying next to the coast.

6.2. Estimating Advective Time Scales for the Bay

Previously, in Section 4, we mentioned the fact that it is difficult to
estimate the time required for riverine waters that enter the Bay at
various locations to reach the mouth. For barotropic waves, i.e., sur-
face gravity waves, where the water depth, A, is small compared to the
wavelength, the phase speed, ¢, is given by (gh)'/?, where g is the ac-
celeration due to gravity. A simple calculation in this case yields time
scales on the order of a day or less for shallow-water (i.e., barotropic)
waves to propagate through the Bay. This time scale is consistent with
our assumption that there are no significant lags associated with
riverine waters traveling through the Bay. However, this assumes that
the Bay acts as a one-layer system, and, clearly, this is not the case
for a significant fraction of CB where a two-layer approximation is
in better agreement with observations (e.g., Pritchard, 1952; Wang,
1979). Hess (1986) calculated flow rates for suddenly increased river
flows into the Bay and found that increased flows at the mouth oc-
curred with delays of one-to-three tidal cycles, with the increased flow
propagating down the Bay at gravity wave speeds. However, during
the aftermath of Tropical Storm Agnes (6/72), minimum salinities
were not observed at the mouth of the Bay until about a month after
peak flooding (Schubel et al., 1976). Holderied and Valle-Levinson
(1997) also employ a one-month lag to account for the time required
for the effects of river discharge to reach the mouth of the Bay. Ac-
cording to Walstad (personal communication), advective time scales
for the internal (i.e., baroclinic) mode range from 10 to 30 days. Such
delays would argue against a simple one-layer approximation follow-
ing major discharge events from the Bay. For a two-layer system,
the phase speed for waves where the wavelength is much greater than
the water depth can be expressed as

¢ = [g((mha/ (1 + ha))(p2 — p1/p2))]'?
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difference between the plume and the layer below, the Kelvin number

will be seasonally dependent and should increase during winter when
the density difference is a minimum.

7. SUMMARY AND CONCLUSIONS

The purpose of the work presented here has been to determine the
ability of the Coastal Ocean Forecast System, given the existing model
constraints, to portray the structure and evolution of the low salinity
plume formed by the discharge of low salinity water from CB follow-
ing a major discharge event. Realistic tidal and wind forcing were
included. Monthly climatological outflow data for CB that are used
routinely in the model were also included in a parallel model run in
order to determine the impact of discharge from the Bay on the behav-
ior of the plume. Observations of surface salinity from a recently-
developed airborne microwave radiometer, i.e., salinity mapper, were
included for comparison with, and evaluation of, COFS, particularly
in the near-field region of the plume. In the absence of observations, a
discharge function was constructed to specify the outflow from CB
following HF based essentially on a simple summation of the major
river inputs. This scenario is consistent with waters which travel
through the Bay at barotropic wave speeds, but not consistent with
baroclinic wave speeds which indicate circulation time scales on the
order of a month. The resulting discharge time history concentrated
the primary outflow over a period of just 3 days or so, producing what
was expected to be the maximum impact on the behavior of the low
salinity plume. .

The salinity maps from the salinity mapper revealed a significant
reduction in surface salinity near the bay mouth between the 14th and
the 19th of September 1996. The model-generated salinity maps,
however, did not indicate such a trend. This discrepancy can be at-
tributed to the inherent difficulties in specifying the initial conditions
at the mouth of the Bay including a discharge function which was most
likely unrealistic, and the relatively coarse spatial resolution of the
model. Although the salinity maps from the airborne radiometer
extended only 2025 km offshore and covered primarily the near-field
region of the plume, the model results extended almost 100km

CHE!

offshore and, thus, covere
We have no direct verific:
from the bay mouth, but
more realistic due to the ir
with, such factors as atmos
action with the prevailing
fluence. The plume structn
far field region are consi
general agreement with
regard, the modeled plum
turning to the right along
agreement with past obser
by a separate calculation ¢
that clearly indicated the
because the coastal bound
isobath and not to the coas
with the proper location a
away from the coast which
from the south.

A major result from the
function based on daily «
significant improvements i
the monthly climatological
in the model. In particula:
plume were much stronge
control runs. Based on tl
observed and forecast outf
available within the model
flows that are presently us

The surface circulation
influenced by the local wi
by the strong salinity gra
according to the model
changed rapidly in respons
to changes in wind forcing,
less.

Although the primary e
the model to characterize




t {ER et al.

| e Tayer below, the Kelvin number
| ould increase during winter when

| INS

| here has been to determine the
t System, given the existing model
- and evolution of the low salinity
- w salinity water from CB follow-
stic tidal and wind forcing were
| itfiow data for CB that are used
| sluded in a parallel model run in
| harge from the Bay on the behav-
surface salinity from a recently-
- mieter, i.e., salinity mapper, were
- valuation of, COFS, particularly
 In the absence of observations, a
to specify the outflow from CB

simple summation of the major
istent with waters which travel
: speeds, but not consistent with
1e circulation time scales on the
charge time history concentrated
just 3 days or so, producing what
ipact on the behavior of the low

tv mapper revealed a significant
- bay mouth between the 14th and
- model-generated salinity maps,
snd. This discrepancy can be at-
t specifying the initial conditions
ischarge function which was most
coarse spatial resolution of the

from the airborne radiometer
1 covered primarily the near-field
esults extended almost 100km

k& CHESAPEAKE BAY PLUME 345

offshore and, thus, covered the far field region of the plume as well.
We have no direct verification of the model results beyond ~25km
from the bay mouth, but our expectation is that they should be far
more realistic due to the increasing influence from, and/or interaction
with, such factors as atmospheric forcing, earth rotation, mixing, inter-
action with the prevailing circulation, and possible bathymetric in-
fluence. The plume structures that were generated in the model in the
far field region are consistent with this interpretation, and are in
general agreement with past observations of this feature. In this
regard, the modeled plume displayed the effect of earth rotation by
turning to the right along the coast south of Cape Henry, in general
agreement with past observations. This result was further supported
by a separate calculation of the Kelvin number which yielded a value
that clearly indicated the importance of earth rotation. However,
because the coastal boundary for the model corresponds to the 10m
isobath and not to the coast per se, the model should produce a plume
with the proper location and orientation in cases where it is located
away from the coast which often occurs when the prevailing winds are
from the south.

A major result from the simulations was that our use of a discharge
function based on daily observed river inflows to the Bay showed
significant improvements in characterizing the plume as compared to
the monthly climatological outflow time history that is presently used
in the model. In particular, the salinity gradients in the region of the
plume were much stronger for the hindcasts than they were for the
control runs. Based on these results, it is recommended that daily
observed and forecast outflows be used in the COFS wherever they are
available within the model domain in place of the climatological out-
flows that are presently used.

The surface circulation off the mouth of the Bay was strongly
influenced by the local winds and to a lesser, but noticeable, extent
by the strong salinity gradients around the periphery of the plume,
according to the model results. Also, the structure of the plume
changed rapidly in response to rapid changes in outflow from the Bay,
to changes in wind forcing, or to both, on time scales of several days or
less.

Although the primary emphasis in this study was on the ability of
the model to characterize the surface manifestation of the CB plume,
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the model was also used to construct a sequence of vertical profiles of
salinity along a line close to the axis of the plume. The strength of the
halocline tended to weaken offshore. Also, the depth of the halocline
decreased from roughly 10 m near the mouth of the Bay to depth of
5m or so at distances'of 60—75km offshore.

It is a difficult task to construct discharge functions that realistically
portray the outflow from CB. This problem arises, first, because direct
observations are lacking, and, second, because it is difficult to estimate
the time required for riverine waters which enter the Bay at various
locations to circulate through the bay system until they reach the
mouth. Studies are needed to provide additional guidance in this area.

In the future the possibility of acquiring surface salinities on a regular
basis would provide a new source of data which could be assimilated
into coastal circulation models such as the COFS. This information
would be particularly useful along the U.S. East Coast where a number
of major rivers and bays feed directly into coastal waters.
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COLOR PLATE II Maps of surface salinity obtained from the Scanning Low-
Frequency Microwave Radiometer for September 14 (upper panel) and September 20
(lower panel), 1996. “CC” refers to Cape Charles located at the north end of the entrance
to Chesapeake Bay, and “CH” refers to Cape Henry located at the south end of
Chesapeake Bay. The distance from Cape Charles to Cape Henry is approximately
15km. Each pixel represents a one km? area. (See L. C. Breaker et al. page 325).




