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Interactive modeling of surface waves and boundary layer !

D. Chalikov?

Abstract

A new theoretical approach to investigate the nonlinear wave dynamics and
wind-wave interaction 1s developed on a coupled model of wave boundary layer
(WBL) and surface waves dynamics. WBL-model is based on the nonstatic
Reynolds equations written in nonstationary conformal surface-following coor-
dinate system in the 2-D domain above an arbitrary periodic moving surface
which may be represented by a Fourier series. Closure scheme is based on a full
turbulent energy evolution equation. Wave dynamics are simulated based of
the equations for potential waves. The solutions for air and water components
are coupled at each time step by assimilation of surface pressure (obtained
from the boundary layer model) into wave model, and shape of the surface
and surface velocity components (obtained from the wave model) into bound-
ary layer model. The method developed may be applied to a broad range of
wave dynamics and wind-wave interaction problems where the assumption of
two-dimensionality is acceptable.

1. Introduction

Previous investigations of dynamic interaction between wind and waves
were performed mostly for idealized cases of steady monochromatic harmonic
waves, which were predescribed at the air-sea interface (Gent, Taylor, 1977;
Chalikov, 1978, 1986). However, a recently developed method for numeri-
cal solution of potential wave equations (Chalikov, Sheinin, 1997) allows the
possibility to simulate the long-term evolution of nonstationary surface wave
fields. Wave model is based on the basic equations of potential flow with a
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free surface written in confomal surface-following nonstationary coordinates.
This model is coupled with Wave Boundary Layer (WBL) model. The WBL is
defined as the lowest part of the atmospheric boundary layer above the surface
waves the structure of which is directly influenced by wave-produced fluctua-
tions of velocity and pressure. The exchange of momentum, energy and mass
between air and water depends considerably on the specific properties of the
WBL. Direct empirical data on the statistical structure of the WBL is sparse,
and the only viable method of investigating the WBL 1s through numerical
modeling.

2. Coupled model
Let us consider the motion of a two-layer liquid in the domain
—w<r<oe, —x0 <Yy <o, _HwSZSHaJ (1)

with interface h(z,y,t). The origin of coordinate z coincides with the mean
level A. Density of liquid in upper part of the domain is p = p,, and in the
lower part is p = p,. The motion of the surface obeys a kinematic boundary
condition

wo = hy + uphg + vohy, (2)

where ug and vy are velocity components at the surface z = A (subscripts of
independent variables denote partial differentiation with respect to the vari-
able.)

A model describing the dynamics of a two-layer liquid is formulated with
the following restrictions
1. Surface h(z,y,t) is periodic in z and y directions with period 27 L. Conse-
quently, surface may be represented by Fourier expansion

(Bswt) = 3 B i) Oulmyy); (3)

where £k =1,2,3...,00and I = 1,2,3, ...c0 are wave numbers in .z and y direc-
tions, and @y are the basis functions.

2. Direction of z-axis coincides with direction of tangentional force 7 apllied
at upper boundary of domain z = H,. 7 is a constant in space and time.

3. Fourier coefficients for the surface obey conditions hy = 0 at [ < M. This
condition assumes that up to truncation wave number k = M surface h(z,y,t)
may be considered as a one-dimensional in the horizontal domain.

4, Probabﬂty distributions for surface disturbances and turbulent ﬂuctuations

flection with respect to X-axis.



2.1 Model of boundary layer above waves

Let us consider the conformal surface-following coordinate transformation
for upper domain at { > 0

TR Y O L L A ) )

—M<k<M k#0

p=thmldr T ml)eila by e (5)

—M<k<M k#0 S]ﬂh kHa

where 7, are the coeflicients of Fourier expansion of the free surface n(¢, 7)
with respect to the new horizontal coordinate £, and ¥, denotes the function

0@ ={ Sk F 20, (©)

(note that (ﬁk)g = k’ﬂ_k’ and Z(Aklgk)é == *ZkA_k'l?k); M 1s the truncation
wavenumber to be used in numerical integration.

Euler equations after transformation and averaging (Chalikov, 1978) can
be expressed as (signs of averaging for first order moments are omitted)

dJu _ Opze  Opz  O(zeu'v/ + zeuw')  O(—zgdW + zeu'n) )
dr 8¢ a¢ o€ ¢ ’

dJw _ Opz  Opze  O(zu'w +zwv’)  O(—zu'w + zeu'w’) (8)

where gg denotes a total time derivative

d7)  8J()  8Ju() . aTw()
& or T @ T ac ' 9

The continuity equation becomes °

aJ 9Ju IJw

5?—1_?9?__]—6—(:0. (10)

Equations (7)-(8) are written in nondimensional form, with the following
scales: length L, time T = LY/2¢g=1/2 velocity LY2g/2, pressure P = poglL (g
1s acceleration of gravity).

In equations (7-10), J is a Jacobian of the transformation given by (4),(5):

J==z}+2 ==z} +2, (11)
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and u, w are the con‘travaria‘nt velocity components
= (u— 2 )ee + (w - 2,)7) (12)

w=J7 (~(u ~ z:)ze + (w — 2,)z¢) - (13)

On the interface £ = 0(z = n) the velocity components obey kinematic
condition (2), which in (£, {)-coordinates takes the form

— (U —z.)ze + (w— 2z )ze = 0. (14)

Hence, the vertical component of contravariant velocity w is equal to zero on a
surface. It means that momentum and any other properties are not transferred
through the surface by velocity field.

Second order turbulence moments are traditionaly represented as product
of turbulent viscosity coefficient K and correspondent component of strain
velocity tenzor @, ;

W = 2K J @, = 2K J ! (% _ auzé)

¢ ¢

— oy [ O(uze + a — wz
wiw =KF Py = B ( ( Zéaf ) =+ (u:rgag 5)) (16)
—— # . d
W = 2K J 1y, = 2K (—;”E-‘f- + ;“;5) (17)
Turbulent viscosity coefficient is taken in a form
K = kl(cre)'/? (18)

where & = 0.4 is von-Karman constant, and ¢ = 4.6, and e is a normalized
kinetic energy of turbulence

€=

(re) ™ ()2 + () + (v')?) (19)

[ I

Turbulent lenght scale [ was calculated through the relation

z:k/[deg (20)

which generalizes a routine mixing length relation { = kz.
Turbulent energy is calculated with evolutionary equation

dle 0 _de 9 _0de JK JKe
E Y a el P n s, P
dr  9¢ 0¢ ¥ (9(_‘“](6(:‘_’— Qer i ®is el?

4



Eqns (34) and (35) are written for the surface { = 0 (so that z = 7 as
represented by expansion (30)), and J is the Jacobian of the transformation.

Coefficients in Fourier expansion of function f in (34) and (35) are con-
nected with coeflicients in Fourier expansion of function g by relation

5= { g_ coth (kH,) o ifk#0 (37)
5 LY Mcker ko En_kgrsinh™?(kH,) if k=0

Boundary condition (27) readily yields:
D¢, =—H,,7)=0. (38)

The Laplace equation (33) with boundary condition (38) is solved via
Fourier expansion (which reduces system (33) — (35) to a 1-D problem):

, cosh k(¢ + H.,) :
o= T ain ot (39
where ¢, are Fourier coeflicients of the surface potential ®(¢,{ = 0,7). Equa-
tions eqns (34-36) together with definition of (11) constitute a closed system of
equations for the surface functions z(¢,{ = 0,7) = n(&,7) and ®(£,( =0, 7).
Thus, the original system of equations (22), (24) is transformed without any
simplifications into two simple nostationary equations which can be effec-
tively solved using the Fourier transform method (see details in Chalikov,
Sheinin, 1997).

2.3 Boundary conditions and matching through the interface

We assume that height of air domain H, is chosen large enough, so that
wave-produced fluctuations at = = H, may be neglected. Natural boundary
conditions in this case are assigning the horizontal component of the verti-
cal flux of momentum, zero vertical velocity, and absence of wave-produced
perturbation of turbulent energy. That is

s=l=dyt W =r, =0, é=1. (40)

Lower boundary condition (38) has been alreday taken into account in ex-
pansion for velocity potential (39). Surface pressure pp which is calculated in
the boundary layer model is taken into account in equation (35). Influence
of waves on the boundary layer is accounted through the metric coefficients
Try Zry Te, 2¢ included in Eqs. (7 - 13) and boundary conditions on interface
h(z,t). Because a wave model is based on potential flow assumption cannot
assimilate a surface tangential stress, matching conditions on interface consist
of the continuity of velocities (u,w) and pressure p. Linear theory (Mails,
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1955) gives an estimate for Fourier coefficients of the pressure field p, ~ fn;
(8 ~ 107 — 107% is & wind-wave interaction parameter). Because term ep is
small, matching of water and air models may be performed by independent
integration of both problems with exchange of matching information at each
time step. A primary boundary condition for boundary layer on an interface
¢ =0 (z = A(z,t)) is assigning the surface velocity components ug(&,7) and
wo(€, 7) calculated in a wave model. Nevertheless, this condition is diffucult to
use in the air model directly because the tangentional component of velocity
has a logarithmic singularity; thus, the vertical step in the vicinity of surface
should be on the order of roughness parameter z;. This problem may be effec-
tively resolved by assuming that, very close to the surface in a layer with the
height of h,, the structure of flow is fully adjusted to local tangentional stress
Ta, Which obeys the quadratic law

Tg = C[J()(u = UO) | u — Up ‘ P (4:1)

Here u is contravariant u-component of velocity at height h. ug is its value on
the surface calculated by-(12), (13), with surface velocity component in the
water model given by

Up — Jﬁl((I)IJ?g g @szf) (42)
wo = J N Dpze — Do) (43)
Thus, stresses are calculated by the relations
ww'ze —w'w'zg = -—Toxg(O)Jé/E (44)
uwze +wwze = —7035(0)J3/2 (45)

We assume that local drag coeflicient is connected with roughness param-
eter (, defined by energy of subgrid waves.

% 2 ( /; f: S(k, I)dkdl)m (46)

where S(k,[) is two-dimensional wavenumber spectrum of subgrid waves.
It was shown (Chalikov (1996) that zp may be estimated by relation

By = Xa1/27' (47)

where « is a coefficient in the power spectrum in the high frequaency range
S = aw™5 which is a weak function of wave age (Chalikov, 1996). and y is
a constant of order of 0.1. Note that.model results are not very sensitive to
value of £a!/?. Finally, a local drag coefficient is calculated by the relation

i 2
o= a2 "



where h, is the height of adjusted layer which is assumed to be equal to half
the thickness of lowest layer in a numerical model.

Assumption on existence of adjusted surface layer is also used for modifi-
ucations of differential production term Py (next to last terms in Eq. (21) in
the lowest layer of numerical model.

Matching of models was performed by exchange of information between
its air and water counteparts: air model assimilates the geometrical charac-
teristics of the surface n = 2(0), n; = 2(0), n, = 2.(0) and surface potential
®y = ®(0), and water model assimilated surface pressure py. Transfer of data
from lower coodinate £(¢ = 0) to upper coordinate £(¢ > 0) was made by cubic
splain interpolation of gridded data which provided accuracy of order of 10719,

3 Numerical scheme

Numerical solution of water and air problems was based on Fourier-grid
method, developed initially for modeling of global atmoshere (Orszag, 1970;
Fliassen et al., 1970). In order to approximate the derivatives of any variable
a over £, both in water and air, the spectral method was based on Fourier
expansion of the variables with a finite truncation number M.

at, )= Y a()O(6) o (49)

—M<k<M

This expansion was used for calculation of derivatives over £ for variables
and z in water model and for u;, v; and p; at eachlevel j = 1,2,3,...L in the air
model. This presentation allows a calculation of the derivatives over ¢ exactly.
The nonlinear terms are calculated with the so-called transform method i.e.,
by their evaluation on a spatial grid. If Y(u(¢),v(€),w(€),...) is 2 nonlinear
function of its arguments which are represented by their Fourier expansions,
gridpoint values w(£U)), v(éW)), w(£W), .. are first calculated, i.e., inverse
Fourier transforms are performed; then Y1) = Y(u(¢U)), v (€0, w(£W), )
are evaluated at each gridpoint; finally, the Fourier coefficients Y} of the func-
tion ¥ are found by direct Fourier transform. Here £€U) = 27(j —1)/N, and N
is the number of gridpoints. For precise calculation of nonlinearities we must
choose N > (v + 1)M where v is the maximum order of the nonlinearities.
Since the equations include division by the Jacobian, the nonlinearity is of
infinite order so that, strictly, the above condition on N cannot be met. How-
ever, numerical integrations show that if we choose a value of N that ensures
an exact evaluation of the cubic nonlinearities (¥ = 3), a further increase in
N (with fixed M) virtually does not impact the numerical solution {Chalikov,
Sheinin, 1996). For most runs, M = 100 and NV = 400 were used.

The vertical derivatives in WBL model were approximated with second-
order accuracy on nonuniform grid with vertical step Az; growing with = as z°
(s is a stretching parameter). Number of layers I was chosen 30, and s = 0.5.

The approximation the differential terms is more or less straightforward.
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Figure. 1 f-parameter as function of nondimensional frequency: solid line -
present model, dashed line - approximation obtained in (Chalikov, 1993). Dia-
monds are S-function calculated with present model for multi-mode wave field.

where hy,h_y, Po, P_r, Th, Tk, Ug, U_g are Fourler amplitudes of elevation A
and surface pressure p, tangentional stress 7o, and contravariant u-component
of velocity respectively.

As seen, f-function calculated with present model agrees well with results
obtained in previous versions of the model. This agreement is not surpris-
ing, because present boundary layer model is similar to the previous model
(Chalikov, 1986), and the only difference is that previous model did not use a
conformal mapping.

Coupled simulation of boundary layer and waves was performed for initially
assigned multi-mode wave field with random phases for nondimensional fric-
tion velocity v, = 0.2, corresponding to very young wind waves. Time step was
equal 0.001, and calculations were performed up to ¢t = 500. Typical examples
of spatial structure of simulated fields are shown in Fig. 2 and Fig.3. Apparent
discontinuity of stream function on the surface is created by large gradients
of velocity in the adjusted layer. Positive anomalies of pressure dominate at
upwind sides of waves, and negative - at downwind sides. This correlation of
slopes and surface air pressure produces the positive flux of energy from wind
to waves. .

It is interesting that negative anomalies are usually much larger than posi-
tive one in their magnitudes, and they are mostly concentrated close to domi-
nant wave peaks. Even for a monochromatic wave such distribution of pressure
cannot be presented by single Fourier pressure mode.
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Figure 2. Structure of two-layer flow. Thin lines are contours of stream
function of wave motion in water and wave-produced motion in air after remov-
ing the mean flow (obtained by averaging in curvilinear coordinates).. Thick
lines are contours of pressure. For both sets of contours, dashed lines corre-
spond to negative values. Points of breaking are shown by dots in vicinity of
wave peak at downwind slope. i

T T T T RRLEERAZa ARz
2 mnlll.ﬁ:lr" f)[:;lll’;'\"':l:' T vivirvann g
Tonars gt oe L e IREERRRTTITRED
A B IRERERRIRIENNL:
sty he e e Blep st [EERETERERIRETE
Tan Dyl H Gt LT IR RERERREsENIT
s U P Tyl g f1U [NER SRR
L gy P |,,JH‘,’|"',‘|' INEREEEXRETELE
fonrn e fer iy TR R RETTELY]
AT O R L (T A I [EERRRERTENTy
[ unnn \\u"li"z yond ,’:;rl':’: [REEEERSTRELS!
RULTER R e ,,m..';} g [N R RS RRE)
A PR A EEREEERIESY
P N i S T AT R AL EERERRTTETY
fl)!"}"' Lot \I\ll\\l\.‘%_\-

it
R

b

he t
(P Vs R ;
RN N8y ey 2T W AR T
AR ) ' Vi
& : 5 (RERRE
Wy "yt
iy yiiviaa .
A Vo
_‘m““" LR LR A
N = \ “ RN RN
L : W R
- Ay ‘ 1roa a1l
C ;o
X\ 3

-
ko —— =
< - — ‘ P ==t
St T ; \..\,P__——"‘ & R
02 Gl B0 e W Tow a ‘M RN
by T--" Cig v . 3= \ N
Mgz T o B g £ g s P RS
E o Lis L 0§ T vk B A
| o g P L ) P C o AR A
e i & & 6o AR
F Y.L A e b} VN Y
L T T . A
L - LA O W
L~ ee = " o t% A <=1
e s s i v 1\ N =
~ 4 rd 4 v \
o~ - / ! -
-- s i i - \ \
. N ~
- ’ 1 1
—1 S AN A - T O, I L L P (I [ O S O

3
o
(@]
N
2]
N
(@]
(o)}
O
o
@]

x/L - ’

Figure 3. Stream function as in Fig 2 and distribution of logiee, Solid
lines correspond to positive anomalies of energy of turbulence, and dashed -

to negative anomalies.
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Consequently, a linear theory of wind-wave interaction cannot be correct.
Distribution of energy of turbulence is shown in Fig. 3. As seen, turbulence
is enhanced in the vicinity of peaks and weakened along troughs. ‘

Analysis of animations of two-layer flow shows, that deep negative anoma-
lies of pressure and intense generation of turbulence occur simultaneously when
a sharp wave peak arises due to specific phase situation. Close to the wave
peak, energy of turbulence may increase up to one order of magnitude, forming
a stretched plums, which often separates from wave and travels with the flow
getting attenuated due to dissipation.
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Figure 4_Instataiiéous wave spectrum (), Spectrum of dissipation due to
breaking (D), Spectrum of Energy flux from wind to waves due to tangential
stress (IT) and due to pressure (IP), separated by interval §t = 2. Thick lines
shows averaged spectra.

13



Spectral characteristics of turbulence are presented in Fig. 4. Variability
of wave spectrum increases strongly with wave number. Spectrum density of
dissipation is growing with increasing of wave number, and spectrum of input
is decreasing. Flux of energy to waves due to pressure field is one order larger
than flux of energy due to tangentional stress. Note, that effect of stress can-
not be taken into account in potential model of waves. Generally, dissipation
of wave energy in this run is much larger than input.

5. Conclusions

In this study, tye dynamical interactions between a wave field on an ocean
surface and the atmospheric boundary layer immediately above it are srudied
by considering them to be a fully coupled system. A non-stationary confor-
mal surface-following mapping has been developrd to transform the governing
potential flow equations for surface waves into two time-dependent differem-
tial equationswhich are much simpler to deal with, particularly in studies of
nonlinear processes. Specifically,, an algorithm has been developed for the
parameterization of energy dissipation due to wave breaking. Because the oc-
curance of breaking events depends considerably on phase configuration, this
algorithm uses a search for those points in physical space where steepness ex-
ceeds a critical value. Dissipation depends mainly on energy flux into high
frequency part of the spectrum. The part of the spectrum that contains most
of the energy is not much influenced by the critical value of the steepness used.

A conformal mapping used to transform the Reynolds equation in the at-
mospheric boundary layer above waves. After this transformation, the a second
order turbulence closure scheme, based on turbulent energy evolution equation
and mixing lengh scale has been used. The WBL Oregion of the atmosheric
boundary layer above the ocean surface waves) model was coupled to the wave
model through matching the pressure and velocity fields at the interface. For
monochromatic waves, the wind-wave interaction parameter is reasonably close
to previously known results. But even in this case, the mechanism of overflow
is essentially nonlinear and the time scale for reaching equlibrium regime is
larger than the period of waves.

The statistical structure of WBL and interaction parameters has been ex-
amined. It is shown that dependence of wind-wave interaction parameter on
wave number differs from that obtained by considering only monochromatic
wave components.

The technique developed can be used to study a variety of nonlinear wave
dynamics and nonlinear wind-wave dynamics provided that the twodimen-
sionality in (z,z) and periodicity of waves are accepteptable. Such problems
include the investigation of spectral propertioes of nonlinear interactions of
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wave field covering a wide range of wave numbers, depths, capillarity coeffi-
cients and wind speed. It is also possible to examine the coupling between
short and long waves in the absence of wind as well in its presence.
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