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ABSTRACT

Space–time filtering has a long and often confusing history in the geosciences. It is called by different names
in different areas of geoscience, where numerous applications have been developed. The variety of notations
that have emerged adds to this confusion. A unified treatment of spatial–temporal estimation is presented, which
highlights its duality and the associated trade-off in the construction of any optimal estimation algorithm.

The duality in optimal estimation comes from the requirement that the representation of the spatial–temporal
statistical structure of the increments between the true field and the system-operator model used by the filter be
matched with the true ensemble structure of the increment field. The associated trade-off arises from the following
dichotomy: the closer the system-operator model corresponds to the true system operator, the less ensemble
structure remains in the increment field. Conversely, the simpler the model of the system operator, the more
residual statistical structure remains to be represented.

Several examples of estimation of spatial–temporal systems, in practice, are presented to illustrate the power
of the duality. The rationale for determining the placement of effort in modeling the system operator vis-à-vis
representing residual statistical structure is discussed.

1. Introduction

This paper is about unification of concepts of field
estimation for stochastic–dynamic processes and about
clarification of some esoteric methodologies. The pres-
ent level of interest and sophistication in writing time-
varying estimates for spatial fields, as demonstrated at
the Sixth International Meeting on Statistical Climatol-
ogy (6IMSC) in Galway, Ireland, invites an overview
of nominally different ways of achieving space–time
estimation. A single formalism can be written to de-
scribe their common purpose. In this one formalism,
nominally different variations in approach are seen in
relation to one another, their elemental differences are
clearly evident, and guidance may be found for increas-
ing resolution and accuracy with their algorithms.

Several examples from climatological research are
used to illustrate both the appropriateness of the con-
ceptual unification and the duality of its formalism.
These examples are taken from the three invited papers
in the session on spatial statistics at the Galway meeting.
A final example is based on the U.S. Navy’s operational
analysis system for nowcasting global sea surface tem-
peratures. The latter provides an excellent illustration
of the power and consequences of working with the
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duality to heighten the resolution of algorithms for the
estimation of large-scale geophysical fields.

2. Current approaches to estimation of
spatial–temporal processes

Statistically based techniques for the estimation of
spatially evolutionary systems have developed in dif-
ferent areas of scientific research. The nomenclatures
differ, just as the goals of the underlying scientific in-
quiries differ. Excellent examples of these differences
and of work done in this broad area are provided by
the three papers of the Spatial Statistics Session of the
6IMSC meeting: ‘‘Space–Time Covariance Modeling,’’
by W. Meiring, P. Guttorp, and P. D. Sampson; ‘‘Linear
Models for Spatial or Temporal Multivariate Data,’’ by
H. Wackernagel and M. Grzebyk; and ‘‘Spatial–Tem-
poral Rainfall Processes: Stochastic Models and Data
Analysis,’’ by R. Chandler, V. Isham, A. Kakou, and P.
Northrop.

The goal of the first paper is to create gridpoint av-
erages of surface ozone from observation-point data for
direct comparison with the output of deterministic mod-
els. The deterministic models are based on known chem-
ical and physical processes of ozone production and
atmospheric transport. However, to provide objective
verifications, the estimated gridpoint averages require
the use of independent information. The estimator is
based upon hourly surface ozone monitoring data, with
a detailed model of the diurnally varying covariance
structure of the observed field incorporated into the grid-
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point interpolation algorithm. Modeling the spatial co-
variance structure becomes a complex process in ac-
curately representing temporal and spatial inhomoge-
neities of the observed ozone increment covariances.
(An additional reference to this approach is provided by
Guttorp et al. 1994.)

The second paper presents a formalism that the au-
thors call ‘‘complex kriging,’’ with an associated bilin-
ear model of coregionalization for a multivariate nested
covariance function. The scientific goal behind the the-
oretical work of this paper is the creation of an algorithm
for description and estimation of systems for which the
cross-covariance functions are not ‘‘even functions.’’ As
an application example the authors cite analysis of data
from the earth observing Landsat satellite. Here, as in
the first paper of the session, the detail of the system
estimator must be in the representation of the covariance
structure. (See Wackernagel 1994 for a more detailed
discussion.)

The third paper, on spatial–temporal models for rain-
fall processes, focuses on derivation of models for de-
scription of the complexities of the clustering of rain
cells within moving storm events. The result of this
work will be a stochastic model that can generate syn-
thetic rainfall data for hydrologic studies. In contrast to
the complex nonlinear deterministic models and empir-
ical statistical models of other researchers, the stochastic
model developed by V. Isham and colleagues uses a
modest number of parameters relating to the underlying
physical phenomena, such as rain cells. The stochastic
model is then fitted to empirical data. (Cox and Isham
1994 include additional discussion of stochastic models
of precipitation.)

The motivating scientific objective for each of the
above studies is the estimation of a time-varying spatial
field. The common objective of these estimation pro-
grams is the use of models and observations together
to estimate the present states of various physical pro-
cesses that evolve in time and space, with statistically
optimal, computationally practical algorithms.

3. A unifying representation

A unifying representation for these and many other
estimation programs may be written by generalizing So-
renson’s (1970) notation for Kalman’s time filter, as
done by Thiébaux (1991). We will refer to the gener-
alized version as the GKF. In defining the GKF we re-
quire a formal representation for whatever spatially and
temporally coherent system is under study. For this pur-
pose we may write the present-location, current-time
state of the system as the output of a system operator,
which carries the process from its spatial and temporal
history to the present:

Xs1D 5 oXs, where o is the operator.*fs (1)

This notation can represent highly complex, nonlinear,
inhomogeneous, nonstationary systems, as well as far

less complex systems. Whatever the nature of the sys-
tem, (1) represents the present, true state as output of
nature’s system operator, including such ‘‘unpredictable
innovations’’ as Lorenz’s butterflies. Here, f* denotes
the system operator, or ‘‘nature’s game plan,’’ which
will be incompletely known. The star superscript dis-
tinguishes it from the representation denoted by f,
which is used in its place in the estimator. System state
variables are assumed to be multivariate, and, further,
it is assumed that in its greatest generality the GKF
formulation admits space- and time-varying system op-
eration, with vector-valued subscripts that index space–
time points and increments.

Observations, past and present, are denoted as com-
posites of the true state vectors and observation error
vectors:

Z 5 X 1 j and Z 5 X 1 j . (2)s s s s1D s1D s1D

We specifically include the possibility that the obser-
vation errors j will have more stochastic structure than
white noise. This is a further generalization of Kalman’s
theory, with observations of planetary processes made
from spatial observing systems. All observation reports
from the same instrument and data transmission systems
are subject to the effects of consistent instrument bias
or correlated errors of measurement and transmission.
These factors are particularly significant with respect to
data from buoys, ships, aircraft, and satellites. Further,
we include the possibility that observation error may
not be independent of the state of the system at obser-
vation times and locations.

One qualification is appropriate regarding this nota-
tion for observed quantities. In the case of satellite re-
ports, for example, data obtained from an instrument
may not be measurements of the specific characteristic
of the environment in which we are interested. For sat-
ellite radiance measurements, the corresponding char-
acteristic of interest is temperature. It is possible to con-
vert from values of one to values of the other by known
transformation or transfer functions; for many years
such transformations were applied to satellite radiance
reports to prepare them for assimilation in numerical
weather prediction models. However, more sophisticat-
ed models and data assimilation software now use ra-
diances directly. To accommodate such situations, in an
inclusive GKF notation, we note that the Xs in the ob-
served state vectors of (2) may be more generally rep-
resented as HoXs—that is, as prognostic quantities
whose values are measured by the instruments. We could
refine the notation and express it accordingly in (2) to
distinguish the sensed variable from the true variable of
interest. However, this would seem to add a new level
of complexity to the picture, but a complexity that is
only apparent. For most state variables, H is the identity
transformation. In more complicated cases, it is known
nonetheless, and its inverse is built into the algorithm
f. Accordingly, we omit its further, special designation,
having made note of it for completeness.
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The GKF algorithm for estimating X is written in a
notation that will serve regardless of whether f in the
‘‘first-guess’’ representation foX̂ uses everthing we
know about f* from our scientific knowledge base or
is simply an ensemble average of available information.
Specifically,

X̂s1D 5 fs·X̂s 1 Ks1D(Zs1D 2 fsoXs). (3)

Compare this to expression (1) above for the actual
evolution of system states. The algorithm f has been
substituted for the system operator f*. The output of
the algorithm is corrected by applying a filter, or gain
function K, to the collective discrepancies between val-
ues of the state variable contained in the observation
record and first-guess values for those locations and
times. For the present discussion, the only requirement
we place on the algorithm f that will generate first-
guess values is that it be computationally practical. The
term fsoX̂s, which appears in two places in (3), is the
output of the prediction algorithm applied to the most
recent estimated array as input. This first-guess pertains
to location and time indexed by s 1 D; Zs1D is the
coincident vector of observed values.

The mechanism for combining the information in the
discrepancies between first-guess and observed values,
represented by gain function K, is determined from the
criterion for optimality of the estimated field. Just as
with Kalman’s filter, the optimality criterion of the GKF
is minimization of the ensemble squared difference be-
tween the true field and the estimated field, and this
criterion determines the gain function as a function of
the space–time covariance structure of the increment
field. Specifically, the requirement that the structure of
the filter minimize

^^(Xs1D 2 X̂s1D)T(Xs1D 2 X̂s1D)&&

leads to the determination that

Ks1D 5 Qs1DP ,21
s1D (4)

where the Qs1D and Ps1D components of the filter are
the following covariance matrices (Thiébaux 1991):

Tˆ ˆQ 5 ^^(X 2 f oX )(Z 2 f oX ) &&s1D s1D s s s1D s s

Tˆ ˆ5 ^^(X 2 f oX )[(X 2 f oX ) 1 j ] &&.s1D s s s1D s s s1D

(5)

and
Tˆ ˆP 5 ^^(Z 2 f oX )(Z 2 f oX ) &&s1D s1D s s s1D s s

ˆ5 ^^[(X 2 f oX ) 1 j ]s1D s s s1D

Tˆ3 [(X 2 f oX ) 1 j ] &&. (6)s1D s s s1D

Note that the difference in the composition of the ele-
ments of Q and P is that the covariances of the former
have observation error in only one of the increment
variables. The covariances of P are the covariances of
increments that include observation error at each point.

By replacing the state vector Xs1D in (5) and (6) with

its system-operator representation from (1), these may
be rewritten as:

ˆQ 5 ^^(f*oX 2 f oX )s1D s s s s

Tˆ3 [(f*oX 2 f oX ) 1 j ] && (7)s s s s s1D

and

ˆP 5 ^^[(f*oX 2 f oX ) 1 j ]s1D s s s s s1D

Tˆ3 [(f*oX 2 f oX ) 1 j ] &&. (8)s s s s s1D

4. The trade-off in optimal estimation with the
GKF

The key, generic relationship in the estimation al-
gorithm emerges more clearly if we omit the subscripts
and use standard notation for covariance arrays, re-
writing (7), (8) and (4) as

ˆzS 5 Cov{(f*oX 2 foX), [(f*oX 2 foX) + j]},0

ˆzS 5 Cov{[(f*oX 2 foX) + j], [(f*oX 2 foX) + j]},

(9)

(10)

and
21K 5 zS zS . (11)0

Here, 0 and embody the covariance structures of thezS zS
fields of differences between the true–observed system
states and the researchers’ first-guess states. In (9)–(11)
we can see the trade-off in optimal estimation between
detail in the first-guess representation, relative to the
system operator, and complexity of the covariances of
the increments: f vis-à-vis 0 and . Generically, thezS zS
elements of 0 and are the covariances of the incre-zS zS
ments between true–observed and first-guess values, re-
gardless of how complex or simple the first-guess model
of the system operator is relative to the true system
operator. The structures of 0 and are principally de-zS zS
termined by the relationship between f and f*. This
implies that the closer f is to f*, the less structure there
will be in the increment field and, conversely, the sim-
pler f is relative to f*, the more true field structure
will be present in the increment field. This is the trade-
off in optimal estimation with the GKF and the basis
of the power of its duality.

Elements of the system operator that are not included
in the representation that substitutes for it will be em-
bedded in the stochastic structure of the increment field
and reflected in ensemble, temporal, and spatial cov-
ariations of the increment variables. The statistical op-
timality criterion of minimization of the ensemble
squared error of the estimator has its parallel in the
requirement that the residual statistical structure in the
algorithm used for constructing the filter be captured.
The degree to which the final result achieves statistical
optimality will be determined by the degree to which
the stochastic structure of the increment field is accu-
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rately represented in the filter. If much of the detail in
the system operator is missed by the first guess, as it
will be with a climatological average, for example, ap-
proaching the limit of statistical optimality will require
including significant detail in the representation of the
covariance structure. This is the primary motivation for
the work of Meiring et al. (1995) and of Wackernagel
and Grzebyk (1995).

In contrast with the examples just cited, Chandler et
al. (1995) and Cox and Isham (1994) work at making
the first guess more detailed, which is itself a stochastic
model of the state variable. Their work focuses on
matching the system state model as closely as possible
to the system state operator. Although the resulting sys-
tem model will not completely remove nontrivial sta-
tistical structure from the residual fields, there will be
much less structure remaining to be estimated and rep-
resented in the construction of the corresponding 0zS
and .zS

5. An application to operational analyses

Recent ocean thermal analyses provide a powerful
illustration of the trade-off in the duality. Phoebus and
Cummings (1995) and Cummings (1995) compare two
global sea surface temperature analysis systems: OTIS
1.1 and OTIS 4.0. These are, respectively, the past and
present operational global SST analysis algorithms used
by the U.S. Navy at Fleet Numerical Meteorology and
Oceanography Center (FNMOC) in Monterey, Califor-
nia, for nowcasting surface temperatures of the global
oceans and for updating atmospheric forecast models.
Both OTIS algorithms are optimal statistical objective
analysis (OSOA) systems. In each case, the regression
coefficients of the OSOA estimator for corrections to
the first guesses are derived from mathematical approx-
imations to the covariances of the increments between
observed and first-guess fields.

OTIS 1.1 uses a daily climatology as its first guess
and a 60-h window for taking in observations for anal-
yses at 24-h intervals. The ‘‘daily climatology’’ is a
gridded field of values, time interpolated to the analysis
day from monthly climatologies, where the latter have
been constructed from historical records. SST values
predicted by a mixed layer, thermodynamic model of
the oceans, are also incorporated in the OTIS 1.1 anal-
ysis, but with the status of special observations.

The new analysis scheme, OTIS 4.0, uses the previous
analysis as the primary component of its first guess,
with a 12-h analysis cycle and a 12-h data window.
Specifically, the first guess for OTIS 4.0 is a 12-h-old
analysis based on very recent observations, with oc-
casional assistance from climatology to update grid
points in data sparse regions for which there have been
long intervals since fresh observations were available.
OTIS 4.0 uses new quality control procedures and a
multivariate volume analysis technique (Lorenc 1981).
However, in the context of the present discussion, the

most critical difference between OTIS 1.1 and 4.0 is the
difference between the definitions of the first-guess
field. The first guess of 4.0 generally has much more
of the detail on the current, true state of the SST field
than does the first guess of 1.1 because it is the most
recent analysis using observations from the prior day,
as compared to an average accumulated over many
years.

Phoebus and Cummings (1995) report that the anal-
ysis increments of OTIS 1.1 have generally produced a
very inhomogeneous field, particularly in areas where
the SST gradients in the observed field were sharp. Sta-
tistical inhomogeneity was reflected in strong variations
in the correlation length scales of the increment fields
over the grid and marked anisotropy in some regions.
This is the structure that should be incorporated in the
filter when the first-guess algorithm creates an ensemble
average of available information, such as a climatolog-
ical field. If the filter cannot be designed to supplement
the first guess through its own statistical detail, the out-
put of the GKF algorithm will not achieve its potential
optimality.

Replacement of a model of the system operator with
a different first-guess algorithm will change the statis-
tical structure of the increment field and, thus, the re-
quirement for construction of the optimal filter. Phoebus
and Cummings (1995) provide an excellent example of
this. The authors note that OTIS 4.0, using the previous
analysis as first guess, generally has smaller, more ho-
mogeneous analysis increments, with correlation length
scales that can be applied uniformly across the analysis
grid. This is the trade-off of the GKF duality: a rep-
resentation for the system operator that conveys more
time-specific detail of the true field places a more man-
ageable requirement on filter construction because of
the simpler statistical structure of the increment fields.

In the foregoing example, the geographic and com-
putational scales of the nowcasting procedure placed
practical constraints on the options for increasing the
accuracy of the analysis product from the OTIS 1.1
baseline. In principle, there was a choice of greatly
increasing the statistical complexity of a new filter or
of including more timely detail in the GKF model sub-
stituting for the system operator. Ultimately, the first-
guess algorithm was replaced, with consequent sim-
plification of the filter’s required statistical represen-
tation. This choice and the assignment and parameter-
ization of an appropriately chosen spatial correlation
function for the new analysis increments, together with
other modifications in the analysis scheme, form the
basis for OTIS 4.0. The output produced by this version
of the ocean thermal interpolation system shows con-
siderably more detail in the estimated fields than does
the baseline analysis. In Figs. 1 and 2, reproduced here
from Phoebus and Cummings (1995), we can see, for
example, the tighter gradients in the OTIS 4.0 nowcast
of the Gulf Stream (Fig. 1b compared with Fig. 1a)
and the Kuroshio currents (Fig. 2b compared with Fig.
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FIG. 1. SST analyses with temperatures in degrees Celsius for the western Atlantic at 0000
UTC, 6 October 1994, (a) using OTIS 1.1 and (b) using OTIS 4.0 (Figs. 1a,b. of Phoebus and
Cummings 1995).
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FIG. 2. SST analyses with temperatures in degrees Celsius for the western Pacific at 0000
UTC, 6 October 1994, (a) using OTIS 1.1 and (b) using OTIS 4.0 (Figs. 2a,b. of Phoebus and
Cummings 1995).
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2a). Furthermore, according to Phoebus and Cum-
mings, ‘‘OTIS 4.0 analyses will even depict cold and
warm core eddies that are almost never observed in
the OTIS 1.1 fields.’’

6. Summary

Examples that illustrate the power of the duality in
spatial–temporal estimation have been drawn from pa-
pers presented at a recent meeting on statistical cli-
matology. Their underlying objectives are placed in a
common context, and a generic generalized Kalman fil-
ter notation is proposed to include them. The common
representation for nominally different approaches to the
estimation of systems that evolve in time and space
highlights the origins of differences in algorithms, as
well as the avenues for increasing resolution and ac-
curacy. The trade-off in constructing an estimator is
shown to be between incorporating detail into the first
guess of the system operator and the detail remaining
to be included in the statistical structure of the gain
function that incorporates corrections to the first guess.
This trade-off is further related to the initial examples
where the choices are clearly dictated by research ob-
jectives.

The output of a GKF will be optimal in a statistical
sense only to the degree that the covariance represen-
tation of the filter matches the covariance structure of
the true-minus-guess increments. Ocean sea surface
temperature analyses further illustrate the power of
working with the duality within practical constraints of
existing computational and statistical technologies.
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