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1. Introduction

Lin and Huang (1996b, hereafter denoted as LH) dis-
cuss kinematic aspects of the new Goddard Coastal
Wave Model (GCWAM). Their model is compared to
the well-known WAM model (WAMDI Group 1988;
Komen et al. 1994) and to the WAVEWATCH model
(Tolman 1991b, 1992) using theoretical considerations
and test cases. The basic equation of GCWAM is given
as [LH, Eq. (11)]1

]A ]c A 1 ]c A cosf ]c A ]c Agl gf u v1 1 1 1 5 S,
]t ]l cosf ]f ]u ]v

(1)

which is identical to the governing equation of WAVE-
WATCH2 and represents an extension of the governing
equation of WAM. The left side of this equation rep-
resents the effects of wave propagation as dictated by
the dispersion relation and is inherently linear. The right
side represents source and sink functions, including sev-
eral effects of nonlinear wave propagation. Focusing on
kinematic aspects of wave propagation, LH assume S
[ 0 throughout the paper.

In WAM and WAVEWATCH purely linear propa-
gation is considered, and the characteristic velocities cg,
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etc. are based on linear wave kinematics. Lin and Huang
(1996b) aim to improve upon this approach by consid-
ering nonlinear kinematics in the derivation of the char-
acteristic velocities. As illustrated by Willebrand (1975),
such adaptations to Eq. (1) indeed might be important
for shallow water, although they are generally irrelevant
for deep water. We therefore applaud the attempt by LH.
Unfortunately, we disagree with LH on three major
points. First, the nonlinear group velocity [LH Eq. (6)]
is based on a monochromatic instead of spectral wave
concept, and therefore is critically dependent on sub-
jective assumptions. Second, the characteristic veloci-
ties cu and cv [LH Eqs. (17) and (18)] include new terms
that are attributed to nonlinear kinematics, but that ap-
pear to be inconsistent with conventional nonlinear ex-
pansion and with elementary physical properties of
waves. Third, previous wave models are seriously mis-
represented, and appropriate comparisons with previous
models are not presented in the test cases. We will dis-
cuss these three points in the following sections and
provide conclusions.

2. Group velocity
In their Eq. (6), LH present their nonlinear group

velocity cg. This equation is based on a monochromatic
nonlinear dispersion relation [LH Eq. (4), taken from
Whitham (1974)]. Application to inherently random
wind waves requires subjective assumptions (as will be
discussed below). It appears more appropriate to start
with a spectral model for the wave field and allow for
nonlinear interactions between all spectral components.
Willebrand (1975) shows that such an approach not only
leads to conventional resonant interactions3 but also

3 That is, the nonlinear source terms that are outside the scope of
LH.
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gives rise to nonlinear corrections to the characteristic
velocities in (1). We contend that the latter approach is
superior to the former and that it therefore should have
formed the basis of GCWAM. Because LH have elected
otherwise, their approach requires further inspection.

The nonlinear shallow-water dispersion relation in
LH Eq. (4) is a nonlinear series expansion in terms of
a small parameter4

e 5 (ka)2 (2)

representing the wave steepness. When applied to a
spectral description of the wave field, e has to be re-
placed by an estimate of the steepness from the spec-
trum, typically

2e 5 k N( f, u) df du, (3)E E
du d f

where k2N is the steepness spectrum, and where du and
df are integration bands for which estimates have to be
provided.5 Consistent with the spectral description of
wind waves, an infinite number of wave components
can be considered with du, df → 0. Consequently, e →
0, and this approach reproduces linear propagation (con-
sistent with the inherently linear nature of the spectral
description of a random wave field). Finite nonlinear
expansion terms can only be obtained if finite band-
widths du and df are retained. The magnitude of the
nonlinear corrections then strongly depends on the ar-
bitrary choice of the bandwidth, or following LH, on
the arbitrary spectral resolution.5 This is obviously
aphysical, and LH Eq. (4) should therefore not be used
as the basis of a nonlinear expansion for the group ve-
locity for irregular waves and cannot be considered an
improvement over the well-established linear approach
as used in previous models.

3. Refraction and frequency shift

Equations (17) and (18) present the characteristic
propagation velocities cu and cv of GCWAM. These
equations are given as

1 ]k
c 5 · · · 1 (c 2 c) , (4)u gk ]n

c 5 · · · 1 (c 1 V) ·=(s 1 k ·V), (5)v g

where · · · represent the conventional linear terms as
presented by, for instance, LeBlond and Mysak (1978,
§6), Christoffersen (1982), Mei (1983, p. 96), or Tolman

4 Formally, e 5 ka, (2) is adopted for convenience of notation.
5 LH Eq. (6) is dimensionally inconsistent because the integration

over the spectrum has been omitted. In replies to an earlier version
of this comment, Lin identified this as a typographical error and stated
that the spectral density N should be replaced by N̂ 5 ∫du ∫df N( f, u)
df du throughout LH Eq. (6). The integration increments are defined
by the spectral resolution and are given as du 5 158 and df 5 0.1 f.

(1990b),6 and where the additional terms are the ‘‘new’’
terms of LH.

Equation (5) or LH Eq. (18) is correct, provided that
the spatial and temporal dependence of k [and a, if such
a dependence is assumed as in LH Eq. (9)] is treated
explicitly. If the new term in Eq. (5) is expanded al-
lowing for these dependencies, it vanishes with the use
of the proper form7,8 of LH Eq. (10). Alternatively, x
and k may be considered as independent variables in
the derivation of the characteristic velocities, in which
case Eq. (5) can be written as

Dv ]v
c 5 5 1 ẋ ·= v 1 k̇ ·= v. (6)v x kDt ]t

The first and second term on the right are identical to
· · · and the ‘‘new’’ term in (5). Using the equations for
the conservation of waves and the irrotationality of the
wavenumber vector,8

Dk
k̇ 5 5 2= v. (7)xDt

Furthermore, ẋ 5 =kv, so that the second and third
terms in Eq. (6) cancel. Thus, for steady media, cv 5
0, contrary to the assertion in LH. This will be true even
if it is assumed that v and cv explicitly depend upon
the wave amplitude (i.e., in a nonlinear approach).

We have not been able to trace the origin of the new
term in Eq. (4). If, however, x and k again are taken as
independent variables, ]k/]n [ 0, and the new term
vanishes. Thus, the new terms in Eqs. (4) and (5) appear
to be due to mathematical errors.

Lin and Huang appear to justify the new terms by
labeling them as effects of nonlinear kinematics.9 The
magnitude of terms introduced by a nonlinear series
expansion are expected to depend on the wave energy
or steepness and vanish for N → 0. The new term in
Eq. (4), however, is always finite for shallow water with
varying depths, as k, (cg 2 c) and ]k/]n then are all
finite. On p. 856 LH furthermore point out that the new
term in Eq. (5) is similarly finite in shallow water for
the linear test case 1. It therefore appears inconsistent
to claim that both terms are expressions of nonlinear
wave kinematics.

It should finally be noticed that the new frequency
shift term results in aphysical model behavior. Consider,
for instance, an old swell field approaching the coast in

6 Assuming that n is a coordinate perpendicular instead of tangen-
tial to k.

7 LH mistakenly use the intrinsic frequency s rather than the ap-
parent frequency v in their Eq. (10). The proper form of this equation
follows from the conservation of waves.

8 The conservation of waves and the irrotationality of k follow
directly from the definitions of k and v in the phase function of
monochromatic waves or spectral components, for example, Phillips
(1977), LeBlond and Mysak (1978), and Mei (1983).

9 Whereas this was not clear to us from LH, this argument is re-
peatedly used in the reply to the original version of this discussion.
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intermediate or shallow water. Such swell fields are es-
sentially monochromatic, and their low steepness im-
plies linear dispersion. According to LH Eq. (18) and
the corresponding discussions on pp. 852 and 856, the
absolute frequency v of this swell field will decrease
while approaching the coast. This implies that some
individual waves disappear, which is obviously aphys-
ical for near-monochromatic waves.

4. Previous models and test cases

Lin and Huang (1996b) refer to two previous third-
generation wave models: WAM (WAMDI Group 1988;
Komen et al. 1994) and WAVEWATCH (Tolman 1991b,
1992).10 Both models, however, are seriously misrep-
resented.

The governing equation for WAM in shallow water
applications is given as [WAMDI Group 1988, Eq. (2.1);
Komen et al. 1994, Eq. (3.33) and section III.4]11

]N ]c N 1 ]c N cosf ]c Ngl gf u

1 1 1 5 0, (8)
]t ]l cosf ]f ]u

where N is the energy density spectrum. In form, this
equation is similar to the balance equation of GCWAM
[LH Eq. (11)]. Erroneously, LH represent their Eq. (12)
as the governing equation of WAM. In the latter equa-
tion the characteristic velocities are placed outside the
partial derivatives (transport equation form). That WAM
uses a form where characteristic velocities are included
inside the derivatives (conservation equation form) is
clear from the numerical implementation of Eq. (8) (Ko-
men et al. 1994, p. 237; or source code of WAM).

Lin and Huang furthermore suggest that cycle 4 of
WAM has been used in their test cases,12 but state that
their version of WAM ‘‘. . . does not include wave-cur-
rent interaction or depth change . . .’’ (p. 856). This
implies that they have applied the deep water version
of WAM to all their shallow water test cases. To our
knowledge, all released versions of cycle 4 of WAM
include shoaling and refraction as part of the linear kin-
ematics. It is up to the user to select either the deep
water or the shallow water version. To suggest that the
results of LH Fig. 2 are representative for WAM cycle
4 is therefore misleading. Figure 3 of LH appears to be
dominated by the shift of energy to directions normal
to the shoreline, corresponding to Snel’s law. When im-
plemented properly, WAM cycle 4 also describes this

10 Not described as such, but references to papers included.
11 Because WAM considers steady media only, cv [ 0, and the

corresponding term in this equation can be omitted; source terms
omitted as in LH.

12 See labels in LH Fig. 2.

effect (in spite of the diffusive numerics), as is illus-
trated in Fig. 4.48 of Komen et al. (1994, p. 346).13

Finally, modifications to WAM cycle 4 to include
current refraction are available from MPI Hamburg. Due
to the present structure of the source code, WAM can
only deal with steady currents. This implies that WAM
can also include the steady currents of test 2, and at
least qualitatively represent the corresponding current
refraction, but is (presently) not able to deal with current
refraction due the the unsteady currents in test 3.

The WAVEWATCH model (Tolman 1991b, 1992) is
only referred to in passing, but is generally ignored.
This is justified in Lin and Huang (1996a) and in a reply
to a previous version of this discussion by claiming that
this model is unconditionally unstable. This seriously
misrepresents WAVEWATCH as is discussed in Tolman
et al. (1998).

WAVEWATCH uses the same conservation equation
as GCWAM [Eq. (1)], basing cgl, cgf , cu, and cv on
conventional linear kinematics. Test 1 of LH is domi-
nated by linear refraction and should therefore repro-
duce Snel’s law and linear shoaling. Even in its original
version with somewhat diffusive numerics, WAVE-
WATCH describes Snel’s law excellently (Tolman
1991b, Fig. 5).13 Lin and Huang’s test 2 adds effects of
a steady current. Applications of WAVEWATCH to
steady cases can be found in Fig. 7 of Tolman (1991b)
or in Holthuijsen and Tolman (1991). Finally, test 3 of
LH considers unsteady currents. WAVEWATCH was
designed particularly to investigate effects of unsteady
tidal currents on wind waves (Tolman 1990a, 1991a).
Considering these examples, it would have been appro-
priate to compare GCWAM directly to WAVEWATCH.

5. Discussion and conclusions

Considering the above, GCWAM can be considered
as an attempt to expand upon the WAVEWATCH model
by including nonlinear kinematics. Because these ex-
tensions appear to be flawed, GCWAM cannot be con-
sidered state-of-the-art or an improvement compared to
WAVEWATCH. The development of GCWAM never-
theless raises the question whether it is necessary to
include nonlinear kinematics in coastal wave models.
Whereas nonlinear kinematics are likely important in
studying higher-order nonlinear wave–wave interac-
tions, nonlinear extensions to the characteristic propa-
gation velocities are not necessarily important for a gen-
eral purpose wave model. Such a model should at least
describe all relevant processes at the lowest order pos-
sible. This implies that a coastal wave model should at
least include a linear description of wave propagation
over inhomogeneous and unsteady depths and currents

13 Contrary to claims by Lin, refraction test results of WAM and
WAVEWATCH have been obtained with S [ 0 in the corresponding
balance equations.
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(including shoaling, refraction, and the momentum ex-
change between waves and currents), quasi-linear wave
growth and dissipation, and higher-order wave–wave
interactions to represent the lowest-order mechanism to
shift energy to low frequencies during wave growth.
Until all these mechanisms are adequately understood
at their lowest-order approximation, higher-order ap-
proximations for parts of the model are not likely to
significantly improve general model behavior. Presently,
the weakest link in wave models is the dissipation or
‘‘whitecapping’’ term, which is generally used as the
closure term in tuning wave growth behavior. Until this
term is understood and can be modeled on more physical
grounds, it is unlikely that improved kinematics will
significantly improve overall model behavior. In fact,
only modest progress has been made in this aspect of
wave modeling since Willebrand (1975) closed his paper
with a similar statement.

6. Postscript

From this discussion and the accompanying reply by
Dr. Lin it is obvious that we disagree on many points.
In our opinion, this disagreement is largely based on
erroneous claims by Dr. Lin. For many claims, we have
not been able to find support in the references provided
by Dr. Lin. Furthermore, several statements appear to
be erroneously attributed to us, and we have not been
able to reproduce most of the results that Dr. Lin attri-
butes to ‘‘our’’ models and schemes. We have chosen
not to discuss this in our comments, as it would seriously
distract from our reservations with the original papers.
Considering the above, we urge the reader not to take
any statements in the comments and replies at face val-

ue, but to independently check all arguments, refer-
ences, and results.
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