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1. Introduction

Lin and Huang (1996a, henceforth denoted as LH) dis-
cuss numerical methods for third-generation wind wave
models. One of the justifications for this study is the con-
cern that numerical errors might be mistaken for physical
properties. Having advocated such studies, we greatly ap-
preciate the effort of LH. Unfortunately, LH have not
adequately discussed and referenced previouswork, aswill
be shown in section 2. They present afourth-order scheme
for a**transport equation.” The derivation of this equation
appears to include an error, making the scheme valid for
uniform and steady depths and currents only (section 3).
Because the dternative *‘ conservation equation” is gen-
erally more suitable for wave models (e.g., LH), we will
not discussthe effects of thiserror in detail. Lin and Huang
furthermore present two second-order schemesfor the con-
servation equation. Unfortunately, the discussion of these
schemesisincomplete and inconsistent with the discussion
of previous work (section 4).

2. Previous work

Lin and Huang start with a brief discussion of the need
for accurate wave modeling in the coastal zone, following
a logical line of evolution from deep-water deep-ocean
modelsto smaller scales. The third-generation WAM mod-
el (WAMDI Group 1988; Komen et a. 1994) is accepted
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as the state of the art. To isolate numerical errors, source
terms are neglected, and pure propagation is considered.

Lin and Huang consider two types of equations: atrans-
port equation [their Eq. (5)] and a conservation equation
[their Eg. (33)]. Indeed, vaid equations of both types can
be derived and have been used in wave models. From a
numerical point of view it is therefore irrelevant that we
disagree with LH that their Eq. (5) is used in WAM. The
corresponding discussion will be deferred to the ensuing
comments on Lin and Huang (1996b).

Lin and Huang discuss previous numerical work in sec-
tions 1 and 2b(1), stating that only two propagation ap-
proaches have been used in WAM [first-order upwind
(WAMDI Group 1988) and modified ICN (Tolman 1991)].
They do not mention the leapfrog scheme (WAMDI Group
1988), the SHASTA scheme (Tolman 1992), the third-
order upwind scheme (Bender and Ledlie 1994; Bender
1996), and the ULTIMATE QUICKEST (UQ) (Tolman
1995). Moreover, if source terms are neglected altogether,
older models (e.g., SWAMP 1985') and studies consid-
ering pure propagation (e.g., Neu and Won 1990) become
equally relevant. To assess the relevance of these schemes
for the study of LH, we will discuss the schemes as pre-
vioudly applied in third generation wave models in some
detail. We will aso use this discussion to point out some
erroneous references and claims in LH.

The smplest scheme available is the first-order up-
stream scheme. As demonstrated by LH, this scheme in-
cludes a significant second-order truncation error resulting
in an unacceptably strong numerical diffusion. Contrary
to the claim on p. 840, however, the scheme as applied
in WAM is conditionaly stable when applied to either a
transport or conservation equation (we could not find sup-

t Several models in this study use advanced propagation schemes.
Unfortunately, details are often difficult to trace.
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port for this claim in the quoted paper). This numerical
diffusion can only be reduced by adopting second- or
higher-order schemes. In such schemes numerical disper-
sion errors generally become dominant. These errors man-
ifest as spurious oscillations. Such oscillations are unac-
ceptable in a wave model as they result in the prediction
of negative wave energy. Even if the dispersion error is
negligible, spurious oscillations related to the Gibbs phe-
nomenon can occur (e.g., Boris and Book 1975).

The first published higher-order scheme in a WAM
type model is the leapfrog scheme (WAMDI Group
1988). To avoid negative wave energy due to spurious
oscillations, this scheme was augmented with strong
diffusion. The resulting algorithm is nearly as diffusive
as the first-order scheme (WAMDI Group 1988), and
can therefore righteously be ignored in LH.

The second scheme is the modified ICN scheme (Tol-
man 1991), as implemented in the original version of
the WAVEWATCH model (although LH on pp. 833—
835 repeatedly suggest that Tolman works with WAM).
The main drawback of the ICN scheme is that the un-
derlying algorithm is unstable. Tolman presents several
modifications to this scheme that effectively stabilizeit.
Whereas the modified ICN scheme is a significant im-
provement over the first-order scheme, it still includes
significant diffusion and requires a tuneable parameter
to assure stable interactions with strong source terms.
Whereas the basic critique of LH on the ICN scheme
is correct (i.e., its underlying instability), they seriously
misrepresent it because (i) their Eq. (34) is not ‘‘the”
ICN scheme because it ignores the predictor-corrector
nature of this scheme [Tolman 1991, Eg. (22)], and be-
cause the quoted equation is an adaptation used in phys-
ical space only. The modified ICN scheme for the spec-
tral spaces is significantly different (Tolman 1991, p.
787). (ii) Lin and Huang fail to mention that within the
full algorithm the minimum absolute value of the tun-
able parameter « is 0.1 [Tolman 1991, Egs. (25) and
(26)]. (iii) When applied to a conservation equation this
scheme conserves total action or energy (aswill be dis-
cussed below). Lin and Huang's rendition of thisscheme
in their Fig. 3 more than doubles the total energy.

Not being satisfied with the modified ICN scheme,
Tolman (1992) replaced it with a version of the SHAS
TA scheme of Boris and Book (1973). This scheme is
specifically designed for conservation-type equations, is
stable, and exhibits small dispersion and diffusion errors
(Boris and Book 1973, Tables I-I11). The flux corrected
transport (FCT) algorithm included in SHASTA fur-
thermore guarantees positive definite model behavior.
The implementation of SHASTA furthermore does not
include tuneable parameters like « in the modified ICN
scheme. The SHASTA scheme thus presents a major
improvement over the modified ICN scheme and should
therefore have been included in the discussion of pre-
vious work and in the comparison with the new nu-
merical schemes of LH.

Unfortunately, LH appear to be under the erroneous
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impression that the the ICN and SHASTA schemes are
either similar or that Tolman (1992) applies an FCT
algorithm to the ICN scheme (p. 840, right column).
They furthermore misrepresent the FCT method as**. . .
nothing but a numerical diffusion.” (p. 840, right col-
umn). For a comprehensive description of the FCT
method (including its drawbacks) reference is made to
Boris and Book (1975). Figure 6 of Tolman (1992)
shows that the replacement of the first-order scheme by
SHASTA effectively removes the numerical diffusion
from the model without introducing spurious oscilla-
tions. It is therefore surprising that LH claim that Tol-
man (1992) ““. . . recently pointed out problems with the
numerics of WAM, but offered no remedy.” (pp. 833—
834, italics added).

Recently (Tolman 1995), the SHASTA scheme in
WAV EWATCH has been replaced by the more accurate
UQ scheme (Leonard 1979, 1991). Higher-order
schemes have also been introduced in WAM (Bender
and Leslie 1994; Bender 1996). These latest develop-
ments occurred (partially) in parallel to the work of LH.

3. Transport equation

In section 2a, LH derive a new fourth-order accurate
scheme for the transport equation. The derivation of the
new scheme appears correct up to their Eq. (24). This
intermediate version of the scheme still includes partial
derivatives d(c, + u)/ox. Subsequently, LH effectively
assume that? o(c, + u)/ox = 0, which they claim is
justified **Because the transport equation does not in-
clude d(c, + u)/ox.” However, the absences of these
derivatives in the transport equation by no means im-
plies that they are zero. Consequently, the resulting
scheme is formally valid for conditions with a(c, + u)/
dx = 0 only, and is therefore formally not applicable
to shallow coastal areaswith currents. Becausethetrans-
port equation is generally inferior to the conservation
equation (see LH and section 4) and rarely (if ever) used
in shallow water wave models, we have not investigated
the effects of this apparent derivation error in detail.

4. Conservation equation

In section 2b LH discuss numerical solutions of the
conservation equation. Before addressing particular
schemes, LH make the general comment that the con-
servation of total action is a serious problem for the
conservation equation (p. 840). This is not the case, as
can be illustrated with the simple one-dimensiona con-
servation equation

oA d

— + —cA =0, (1)
a - ax

many numerical schemes can be expressed as for which

2LH, unnumbered equation before Eq. (25).
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At

Ajn+l = Ajn + B((frj—(uz) - frj+(u2))- 2
where n and j are time and space counters, At and Ax
are the corresponding discrete increments, and #,_,;, is
the flux cA at the ““cell interface’” between grid points
with counters j — 1 and j. If the fluxes 7 are equally
applied to adjacent grid points, the schemewill conserve
total action perfectly. Cahyono (1994) compares about
20 such schemes. Furthermore, the first-order scheme
of WAM, and the ICN3® and UQ schemes of WAVE-
WATCH can be formulated as

?j*(lﬂ)

=206+ A, ©

1
Fiwny = E(Cj—lAj—l + CjAj)7 (4)

1
Fiwny = E(Cj—l + Cj)f(/*"j—(:ljz)! Aj—ly Aja Cﬂu)i (5)

respectively, where the suffix u identifies upstream, and
CU represents a three-point estimate of the curvature of
A. The SHASTA scheme has a geometric design equiv-
alent to (2) and also conserves total action (Boris and
Book 1973). Thus, in contrast to the claim of LH, it is
fairly easy to guarantee the conservation of total action
if a conservation equation is used. In fact, this guar-
anteed conservation of total action isprobably thesingle
most important reason for using a conservation-type
equation instead of a transport-type equation in a nu-
merical wave model.

In section 2b(2) LH present two new second-order
schemes A and B and a single stahility analysis for both
schemes. The presentation of these schemesisincomplete
because (i) the stability analysis is not representative for
scheme A and (ii) LH do not recognize that both schemes
can produce negative energy. To illustrate thisin asimple
way, we will consider idealized conditions where the CFL
number u = (c, + U)AY/Ax is constant throughout the
domain (e.g., linear propagation of low-steepness swell in
deep water without currents). If the schemes fail in these
conditions, they cannot be expected to give good results
in more complicated situations.

In the above idealized conditions, schemes A and B
reduce to [replacing ‘‘factor’” in (35) with f],

At = (1 — u+ 05fud)A + (u — fudAY,
+ 0.5 w2Ar ,,
(1 + 0.5m)1[(1 — 0.5w)A?

+ 05u(AE + AL, ™

respectively. A conventional stability analysis for Eqg.
(6) results in

(6)
Ajn+1 —

3 Predictor only.
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A =1+ plex — 1) + 05fus(e ™ — 1)7, (8)

which after some straightforward manipulations can be
expressed as

A=1-pu+ pCcoskAx) + iuC sin(kAx),
C=1- fu[l - cos(kAX)], 9

where k is the wavenumber of a Fourier component of
the propagated distribution. A quick (though not nec-
essarily complete) impression of the stability of this
scheme can be obtained by considering the worst pos-
sible numerical resolution kAx = 4, for which

A=1-2u+ 2fu? (10)

This implies that scheme A can at best be stable for 0
< u < f~1= 1.4 (for typical valuesof f givenby LH).
In conditions where u varies in space, stability require-
ments can only become more stringent.

A conventional stability analysis of Eq. (7) indeed
results in an amplification factor identical to LH Eq.
(38) with w constant. Thus, scheme B indeed is uncon-
ditionally stablein conditionswith constant w. However,
for nonlinear waves or variable depths and currents
where u varies, stability requiresthat a = 0in LH Eq.
(38) (LH, p. 843), which in turn implies the stability
requirement

M= g cos(kAX). (11)

For well-resolved wave fields with cos(kAx) — 1 and
decreasing CFL numbers u; < u,_, stability istherefore
not guaranteed. Although this potential instability might
not be important in practical models, scheme B cannot
be considered ‘‘unconditionally stable’” either.*

Furthermore, both schemes require w = 0. Aslong as
the sign of w does not change in the computational domain,
this is not a problem, because a stable computational di-
rection can be assigned. For oscillating currents perpen-
dicular to the wave propagation direction or in conditions
of wave blocking, u will change sign in the computational
domain. Weinvite Lin and Huang to explain how schemes
A and B can be applied in such conditions.

Positive definite behavior of the schemes (6) and (7)
requires that all numerical coefficients are positive. In
(6) the second term thus requires that u < f=*, which
corresponds to the stability criterion. In (7) the multi-
plication factor for A" requires that u = 2 to avoid
negative solutions.

Considering the above, LH misrepresent previous
work and have not presented acomplete analysis of their
new schemes. In doing so, LH present schemes A and
B as the only acceptable schemes for shallow water
wave models using a conservation equation. This po-
sition is not supported by facts. First, LH apply con-

41f this instability ever proves important in a model, it will be an
unconditional instability because it cannot be removed by reducing
the time step.
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flicting standards in the discussion of their schemes.
Both schemesincorporate computational dissipationand
diffusion as a function of w (p. 843, in contrast to the
claim of LH on p. 834). Whereas such errors are said
to be unacceptable for all previous work, they are con-
sidered acceptable in the context of schemes A and B.
Second, LH fail to identify the nonconservative nature
of their schemes as a disadvantage not shared by many
other schemes and instead present an artificial and sub-
jectivefilter asamajor advantage and innovation. Third,
LH claim that large time steps allowed by their schemes
isamajor advantage (p. 834). In fact, scheme A requires
p < 1.4 for stability, and scheme B requires u < 2 for
positive definite solutions.® Lin and Huang furthermore
appear to suggest that u = 0.5 for reasons of accuracy
(p. 843). Such CFL numbers and therefore time steps
are similar to those of other advanced higher-order
schemes (e.g., Fletcher 1988).

5. Discussion and conclusions

Lin and Huang have presented several numerical
methods for solving the spectral wave transport and con-
servation equations. The present paper shows that LH
have presented an incomplete picture of their schemes
and have misrepresented previous work. Their second-
order schemes for the conservation equation neverthe-
less appear a significant improvement over the conven-
tional first-order scheme and are probably preferable
over the modified ICN scheme of Tolman (1991). Un-
fortunately, LH do not present the more appropriate
comparison with the SHASTA scheme as used by Tol-
man (1992). This scheme and more recent higher-order
schemes as mentioned in section 4, as well as advanced
methods for solving conservation equationsin other dis-
ciplines (e.g., Falconer and Cahyono 1993; Cahyono
1994), might well outperform the new schemes by LH.
This, however, can only be established in a thorough
side-by-side validation study, which is out of the scope
of the present discussion.

It should neverthel ess be noticed that the performance
of LH’s new scheme depends upon the application of
an artificial and subjective filter to assure conservation
of total action. Most other advanced schemes do not
need this filter, as they implicitly conserve total action.
It thereforeremainsto be seen if the new schemesshould
be used at all, even if they would prove to give quan-
titatively similar results in idealized test cases.

6. Postscript

From this discussion and the accompanying reply by
Dr. Lin it is obvious that we disagree on many points. In

5Based on an analysis for constant w. Actual requirements might
be more stringent.
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our opinion, this disagreement is largely based on erro-
neous claims by Dr. Lin. For many claims, we have not
been able to find support in the references provided by
Dr. Lin. Furthermore severa statements appear to be er-
roneoudy attributed to us, and we have not been able to
reproduce most of the results that Dr. Lin attributes to
“our’” models and schemes. We have chosen not to discuss
this in our comments, as it would serioudly distract from
our reservations with the original papers. Considering the
above, we urge the reader not to take any statements in
the comments and replies at face vaue, but to indepen-
dently check al arguments, references, and results.
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