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ABSTRACT

A new neural network SSM/I transfer function (OMBNN3) which retrieves wind
speed, columnar water vapor (V), columnar liquid water (L), and SST, using only satellite data
(five SSM/I brightness temperatures) is introduced and compared with the current operational
algorithm for retrieving surface wind speed and NN algorithms developed earlier. The new
NN algorithm systematically outperforms all algorithms considered for all SSM/I instruments
(F8, F10, F11 and F13), under all weather conditions where retrievals are possible, and for all
wind speeds. It also retrieves V and L with an accuracy close to that of cal/val (for V) and
Weng and Grody (for L) algorithms, and produces low resolution S$Ts with moderate
accuracy. OMBNN3 demonstrates significantly better performance at higher wind speeds
(and higher latitudes) than previous NN-based algorithms, generating wind speeds up to ~23
my/s for the available test data, and has a theoretical upper limit of about 32 m/s.

1.0 INTRODUCTION

A new neural network (NN) SSM/I transfer function (OMBNN3) is presented which retrieves wind
speed (W), columnar water vapor (V), columnar liquid water (L), and SS7, using only satellite data (five
SSM/I brightness temperatures (BTs)). Also presented is a detailed comparison of the new algorithm with
the current operational (GSW) algorithm (Goodberlet, et al., 1989) and several NN algorithms developed
earlier (Krasnopolsky et al., 1995a, 1995b).

SSM/I wind retrieval algorithms encounter two basic problems: (1) atmospheric moisture and (2)
high wind speeds. It was shown (Stogryn et al., 1994; Krasnopolsky et al., 1995a), that an adaptive nonlinear
approach such as NNs can accommodate the nonlinearity of the SSM/I transfer function caused by
atmospheric moisture, extending the retrieval capability under cloudy atmospheric conditions. However, it is
not yet clear to what extent retrievals can be extended under cloudy conditions. Although an upper limit for
retrievals (~0.5 mm in terms of columnar liquid water) has been suggested, it is clear that in particular
situations this limit may be significantly lower (e.g., in rain). Because high moisture events are relatively
rare, they are poorly represented in development data sets which makes this problem even more difficult. The
new OMBNN3 algorithm which estimates two moisture criteria, V and L together with the wind speed,
provides an additional information about the level of moisture and control on the accuracy of wind speed
retrievals. '

Several problems arise at high wind speed (see Krasnopolsky et al., 1996a): (1) saturation of BT at
high wind speeds due to saturation of the area of the ocean surface covered by the persistent fraction of
whitecap foam, (2) increasing noise in BT from the transient part of whitecap foam fraction at high wind

!presented at the Fourth International Conference on Remote Sensing for Marine and Coastal Environments,
Orlando, Florida, 17-19 March 1997.
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speeds, and (3) very few buoy observations exist at higher wind speeds (W > 15 m/s). The linear GSW
retrieval algorithm can, in principle, generate high wind speeds; however, validation of this algorithm using
buoy observations shows that it has high scatter at high wind speeds and generates high wind speeds in some
cases even when observed wind speeds are low. The first NN algorithms, SBB NN (Stogryn et al., 1994)
and OMBNNI1 (originally called SER NN in Krasnopolsky et al., 1995a), demonstrated retrieval accuracy
which was significantly better than that for GSW, however, they were not able to generate wind speeds
higher than 16-18 m/s. An improved high wind speed NN algorithm was developed, OMBNN2
(Krasnopolsky et al., 1995b), which is capable of generating higher wind speeds (up to 20-21 m/s without a
bias correction). It uses a bias correction to extend retrievals up to wind speeds of to 25 -26 m/s. However,
this bias correction is instrument and/or satellite dependent. Here we introduce a new NN algorithm® which
generates wind speeds up to 23.24 m/s based on the available data sets without any bias correction
(theoretical high wind speed limit for OMBNN3 is about 32 m/s) and whose accuracy does not depend
significantly on the instrument and/or satellite.

The development of the new OMBNN3 algorithm was possible due to (1) new matchup data, and (2)
a new approach for empirical retrievals using NNs. In Section 2, the architecture of the new OMBNN3
algorithm, the data used and the NN training process are described. In Section 3 we perform a detailed
validation of the OMBNN3 algorithm, using different criteria and matchups for all SSM/I instruments.

20 THE NEW ALGORITHM

The first-generation wind speed retrieval algorithms, including the GSW. algorithm , SBB algorithm,
OMBNN1, and OMBNN?2 followed a standard empirical approach. They retrieved only one value (e.g., wind
speed), regressing it on the satellite measurements (e.g., BTs), as

W = f(BT) 0

where BT is the brightness temperature vector and f is a regression function (NN in our patticular case).
Representation (1) assumes (usually by default) that the data set which is used is complete (representative)
enough to eliminate dependencies of W on other physical parameters (liquid water, water vapor, SST, etc.)
through averaging. This assumption and, hence, representation (1), is obviously not correct at W> 10 - 15
m/s where the buoy/SSMI matchup data are sparse, and dependencies of the wind speed on V, L, and SST are
not removed through averaging. These dependencies create additional noise with respect to wind speed at
higher wind speeds. In this case, (1) gives a biased estimate for the wind speed with a large scatter (large
bias and standard deviation).

NNs allow us to solve this problem without including V, L and SST as additional arguments in (1),
which is the standard solution, that is not suitable for an operational algorithm. The new NN algorithm
(OMBNNS3) can be symbolically written as,

Y =g (BI) )

where the output vectoris Y = {W, V, L, SST}, the input vector is BT = {T19V, TI9H, T22V, T37V, T37H}
and g is a NN. The NN, g, which implements (2) has 5 inputs and 4 outputs, it also has one hidden layer with
12 nodes. Including additional outputs in the NN architecture improves the training process, decreases the
number of local minima in the error function, and stabilizes and accelerates convergence in the training
process. The NN was trained, using the weighting scheme for high wind speed data described in

3The corresponding FORTRAN code which implements OMBNN3 is available upon request from Vladimir
Krasnopolsky, e-mail address: wd21kv@sgi78.wwb.noaa.gov, tel. 301-763-8133.
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Krasnopolsky et al., (1995b), where the weighting function was inversely proportional to the square root of ;
the wind speed distribution. !
For algorithm development and validation several databases were used: (1) A new raw SSMI/buoy :
matchup database created by NRL. Extensive quality control of the matchups extracted from the NRL }
database was required. More than 30 different criteria have been applied to both the buoy and the SSM/I '.
data for quality control, including removal of missing and noisy data. Daily locations for TOGA-TAO '
buoys have been corrected using information from the TAQO Web Home page. (2) The F11 matchups
collected by high latitude ocean weather ships (OWS) LIMA and MIKE were provided to us by D. Kilham of \
Bristol University. (3) For F13, we have created a new low resolution matchup database, these matchups :
have higher noise than the matchups for F8, F10, and F11 which were extracted from the NRL database. The '
F13 matchup data also only cover the time interval from 11/95 to 4/96. Thus, we only use F13 for a relative ;
comparison of the different algorithms. For more details see Krasnopolsky et al. (1996b). '
For all data, wind speeds have been adjusted to a height of 20 m. Clear and cloudy conditions are ‘
defined below and correspond to the retrieval flags given by Stogryn et al. (1994). '
As shown by Stogryn et al. (1994) and Krasnopolsky et al. (1994, 1995a), NN algorithms can :
successfully retrieve wind speeds under clear + cloudy conditions. Therefore, for training we used all }
available matchups which correspond to clear + cloudy conditions, according to Stogryn’s retrieval flag.
Statistics for clear conditions were then calculated by applying the trained NN to the clear portion of the ;
matchup data. Because higher wind speed events were given extra weight, noise in this portion of the data !
could reduce the effectiveness of the training process. To minimize this possibility, we additionally removed f
a number of outliers at higher wind speeds, but no outliers were removed for the test data, or for any other
data which were used for further validation. ‘
Five SSM/I BTs {119V, TI9H, T22V, T37V, T37H} are used as the NN inputs. The output vector is !
composed of wind speed and SST taken from the buoy portion of the matchup, columnar water vapor (V)
produced by the cal/val algorithm from Alishouse et al. (1990), and columnar liquid water (L) produced by
the WG algorithm from the SSM/I BTs taken from the SSM/I portion of the matchup. Standard
backpropagation was used to train the NN. After training, the algorithm was applied to the F11 test data (for
statistics and more details, see Krasnopolsky et al, 1996b).
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3.0 VALIDATION

Previous wind speed algorithms have been developed and validated, using the F8 matchup databases.
Here we use a newly-created database described in Section 2 for validation for all SSM/I instruments (F8,
F10, F11, and F13) and for comparison of the various wind speed algorithms. For comparison with the new
OMBNN3 algorithm we have used the current operational algorithm (GSW), our original NN algorithm
OMBNN1, and OMBNN2 which was improved for high wind speeds. Because the bias correction for
OMBNN2 is instrument and/or satellite dependent (Krasnopolsky et al., 1996a), we do not include it here but !
use only the NN portion of the OMBNN2 algorithm.

In this section we present statistics for the primary output of the OMBNN?3 algorithm - wind speed.
By including additional outputs in OMBNN3, the performance of OMBNN3 with respect to wind speed is
significantly improved, especially at higher wind speeds. Statistics for the other outputs are presented in 1
Krasnopolsky et al. (1996b).

Table 1 shows total statistics for clear + cloudy conditions (for separate statistics for clear ans cloudy
conditions see Krasnopolsky et al., 1996b) for four satellites and four selected algorithms. The table also
contains buoy wind speed statistics for each data set: maximum wind speed, mean wind speed, and the SD,
G
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We now summarize the information contained in Tables 1 and in Krasnopolsky et al. (1996b):
For all weather conditions considered, and for all SSM/I instruments, the NN-based algorithms outperform
the GSW algorithm based on the standard deviation (SD) as a criterion. Based on the biases, the new
OMBNN3 also outperforms the GSW algorithm for most cases; otherwise it produces similar biases. Wind
speeds generated by OMBNN3 have mean values and SDs which are close to those of the observed buoy
wind speeds; therefore, the OMBNN3-generated wind speed distributions are properly centered and have
proper width. Under cloudy conditions, the biases and SDs are unacceptably high for GSW, whereas
OMBNNS3 yields a bias and SD which are acceptable for operational use. Wind speeds are higher on .

Table 1. Total statistics for GSW, OMBNN1, OMBNN2 and OMBNN3 algorithms for CLEAR plus CLOUDY
conditions and for four different SSM/I instruments. Columns 3 - 5 show statistics for the wind speeds per se (o,
denotes standard deviation), and columns 6 - 8 for the difference between buoy and algorithm-generated wind speeds.
SD denotes standard deviation, and CC denotes correlation coefficient, N is the number of matchups.

Satellite Max W Mean W o, Bias SD CC
Buoy 21.5 7.31 317 N/A N/A N/A

o8 GSW 25.9 7.65 3.54 -0.34 2.13 0.80

N = 1637 OMBNNI1 17.1 6.32 245 0.99 1.62 0.86
OMBNN2 18.4 6.80 2.92 0.51 1.60 0.87

OMBNN3 20.6 7.41 3.09 -0.10 1:59 0.87

-Buoy 21.6 7.26 3.18 N/A N/A N/A

F10 GSW 26.0 7.81 3.59 -0.55 2.15 0.80

N = 6879 OMBNNI1 16.4 6.42 2.53 0.85 1.74 0.84
OMBNN2 19.5 6.32 2.77 0.95 1.92 0.84

OMBNN3 225 7.57 3.18 -0.31 1.81 0.84

Buoy+OWS 26.4 7.47 3.51 N/A N/A N/A

Fi1 GSW 303 7.99 3l -0.53 2.09 0.84
N = 6129 OMBNN1 19.4 6.70 2.65 0.76 1.70 0.88
OMBNN2 20.7 6.56 2.90 0.91 1.70 0.88

OMBNN3 228 7.57 327 -0.11 1.61 0.89

Buoy 27.5 10.21 4.58 N/A N/A N/A

F13 GSW 29.0 11.43 436 -1.22 2.59 0.83

N = 1036 OMBNN1 18.5 9.65 3.61 0.55 2.41 0.85
OMBNN2 20.5 9.55 3.49 0.66 2.40 0.86

OMBNN3 231 10.84 4.04 -0.63 2.26 0.87
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average under cloudy conditions and with an rms error of less than 3 m/s, yielding a relative error of 15 - .
25% of the wind speed, again acceptable, considering the higher level of noise under cloudy conditions. '
SDs for OMBNN3 are comparable with SDs for OMBNN1 and OMBNN2 (sometimes even
smaller), which indicates that our NN approach, including the previous weighting of higher wind speeds, is '
robust enough to prevent decreasing accuracy at lower wind speeds because of high levels of noise at |
higher wind speeds. Additionally, there is a consistent improvement (from OMBNN1 to OMBNN3) in the '
ability of these NN algorithms to generate higher wind speeds in each case (for more detailed high wind speed
statistics see Krasnopolsky et al., 1996b). In comparing F8, F10, and F11, the variations in SD and bias are b
relatively small for all algorithms (we do not include F13 here). The largest differences for all algorithms
occur for F10 which may be due to the orbit ellipticity for this satellite (G. Poe, personal communication). }
Fig. 1 shows binned bias, SD, and rms error for the difference between buoy wind speeds and
algorithm-generated wind speeds vs. observed wind speed for GSW, OMBNN2 and OMBNN3 algorithms, '
where the bin size is 1 m/s. Fig. 1shows that OMBNN3 is uniformly better than the other two algorithms in
terms of SD and rms error (except occasionally at high wind speeds for rms error) for all instruments and all
wind speeds. Fig. 2 shows binned bias and rms error for the difference between buoy wind speed and
algorithm-generated wind speeds for GSW, OMBNN2 and OMBNN3 algorithms vs. amount of columnar
liquid water L, where the bin size is 0.05 mm. For all algorithms, biases and rms errors increase with L;
however, OMBNN3 demonstrates better performance for all values of L. These dependencies provide
additional information regarding the accuracy of wind speed retrievals under cloudy conditions and can be
used to improve the retrieval flags. Fig. 3 shows binned bias and rms error for the difference between buoy
wind speeds and algorithm generated wind speeds for GSW, OMBNN2 and OMBNN3 algorithms vs.
amount of columnar water vapor V, where the bin size is 5 mm. Bias and rms error increase sharply at V>
40 mm for GSW. This agrees with our previous experience which shows that GSW performs poorly in
tropical areas. For OMBNNS3, the bias is small and almost independent of V; however, rms error increases .
slowly at V> 50 mm. Fig. 4 shows binned bias and rms error for the difference between buoy wind speeds T
and algorithm-generated wind speeds for GSW, OMBNN2 and OMBNN3 algorithms vs. latitude, where the -
bin size is 5°. OMBNN1 and OMBNN2 have been developed, using F8 matchup data where high latitudes !
were poorly represented. As a result, these algorithms may be expected to demonstrate large (up to 1 - 2 m/s) ;
biases at high latitudes. For OMBNN3, the bias and rms error are much smaller at high latitudes which is - ?
due to the new matchup data which include matchups at high latitudes where the moisture/wind speed ‘
relationships are expected to be different. For GSW, the latitude dependence is not smooth and there are !
regions where bias and/or rms error are unacceptably high. ‘

4.0 CONCLUSIONS

We have presented a new NN-based OMBNN3 transfer function (i.e., retrieval algorithm) for SSM/I
retrievals (including wind speed, columnar water vapor, columnar liquid water, and SST ) which demonstrates
high retrieval accuracy overall, together with the ability to generate high wind speeds with acceptable
accuracy. The results demonstrate that OMBNN3 systematically outperforms all algorithms considered for
all SSM/I instruments, for all weather conditions where retrievals are possible, and for all wind speeds.

Previous NN-based algorithms have not performed well at high wind speeds. In developing the
OMBNN3 SSM/I transfer function, a new NN training strategy which includes preferential weighting at high
wind speeds was introduced to compensate for the nonuniformity in the distribution of observed wind speeds.
Also, the OMBNN?3 algorithm was developed and tested, using a new matchup database. We created this
database from F11 SSMI/buoy matchups and high latitude SSMI/OWS matchups which contained a
significant number of high wind speed events. As a result, OMBNN3 demonstrates significantly better
performance at higher wind speeds and at higher latitudes than previous NN-based algorithms. It generates
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wind speeds up to ~23 m/s for the available test data, and has a theoretical upper limit of about 32 m/s
(Krasnopolsky et al., 1996a). It was also validated for the F8, F10, and F13 sensors and showed significant
improvement in the accuracy of the retrievals for these instruments at higher wind speeds. The retrieval
accuracy for OMBNN3 does not depend significantly on the satellite and/or instrument.

The NN-based algorithms demonstrate on average satisfactory retrieval capabilities under cloudy
conditions. Under clear plus cloudy conditions, the biases and SDs are unacceptably high for GSW
algorithm, whereas the OMBNN3 algorithm yields a bias and SD which are acceptable for operational use.
As a result, the NN-based algorithms have also expanded the retrieval domain from clear, to clear plus
cloudy, conditions yielding an increase in retrieval coverage of ~15%. This result is particularly significant
for obtaining more complete coverage of synoptic-scale weather systems such as extratropical cyclones which
are typically characterized by higher levels of moisture and higher wind speeds. In this study we have defined
cloudy conditions, according to the BT retrieval flags given by Stogryn et al. (1994). These retrieval flags are
based only on BT and are statistical by definition; therefore, they do not preclude contamination from rain in
all cases. If information about local conditions is available, it can be used to improve the accuracy of
retrievals under cloudy conditions significantly. Because OMBNN?3 generates columnar liquid water,
columnar water vapor and SST simultaneously with wind speed, it offers additional opportunities for
specifying local conditions and improving retrieval flags. Regarding columnar liquid water L and columnar
water vapor V, OMBNN3 was trained to simulate cal/val retrievals for V, and WG retrievals for L. It
reproduces the cal/val and WG results with high accuracy. Although, we did not have ground truth data to
validate or improve these retrieval estimates, if such data become available (e.g., radiosonde measurements),
they could be used in the future during the process of training to further improve the algorithm’s retrieval
capabilities.
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