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| separated into patterns lying along regularly located curves, with most of the
rgy concentrated along the curves corresponding to free and bound waves. Thig
of curves can be described by the equation D(w/n,k/n) = 0 (n = 1,2,3,..),
e D(w, k) = 0 is approximated by the linear dispersion relation but does not
wcide with it, especially for large k where there is a tendency for the indicated
ation to approximate a straight line. Some other properties of simulated wave
Is were also analyzed; these included temporal evolution of the spectra and spatial
ribution of the energy of perturbations. The method developed may be applied to
road range of problems where the assumption of one-dimensionality is acceptable.

Introduction

mputational techniques for numerical solution of the Navier—Stokes
1ations have brought new developments to geophysical fluid dynam-

Using modern numerical models, the long-term evolution of several
nplicated dynamical phenomena in different fluids, including the at-
sphere, can be successfully simulated. However, the long-term simu-
ion of a nonlinear multi-mode wave field is difficult to perform, since
st numerical schemes for the Euler equations fail to provide sufficient
uracy for treating nonlinearities in wave motion. The main source of
or is primarily due to the finite difference representation of the vertical
ucture of the flow when waves with different wavenumbers are present.
us, theoretical and numerical investigations of surface gravity waves
usually based on the equations for potential flow with a free surface.
this case the flow is fully determined by the form of the surface and the
ocity potential on the surface and in its vicinity. The potential mo-
n assumption, of course, idealizes the phenomenon, since actual wave
tion is both rotational and turbulent. Fortunately, potential theory
es many results which agree well with observations. For example, it is
l-known that even linear theory yields phase velocity estimates with
accuracy of the order of 1%. A much more sophisticated theory, deal-

with nonlinear wave-wave interactions (Hasselmann, 1962), which is
> based on the potential motion assumption, gives results which are
ifirmed by experimental data.

The main advantage of the potential motion approximation is that the
tem of Euler dynamical equations is reduced to the Laplace equation.
wever, the solution to the problem of surface wave motion is compli-
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cated by the requirement of having to apply the kinematic and dynamic
boundary conditions (both nonlinear) on the free surface, the location of
which is unknown at any given moment. Some attempts have been made
previously to reproduce the evolution of waves in a Cartesian coordinate
system (e.g., Prosperetti and Jacobs, 1983), but such techniques are not
applicable to long-term integrations. A more feasible approach is based
on a formulation of the governing equations in a surface-following co-
ordinate system; the simplest technique uses the difference between the
Cartesian vertical coordinate and the surface height as the new vertical
coordinate, along with Cartesian coordinates in the horizontal. However,
this does not eliminate all of the problems, since the Laplace equation
is transformed into a general elliptic equation, and an integral equation
must be solved at each time step (Chalikov and Liberman, 1991) to cal-
culate the vertical derivative of the velocity potential. Another approach
is based on expanding the velocity potential in power series in the vicinity
of the surface. Such a method, developed by Watson and West (1975),
was applied to the solution of the two-dimensional potential wave equa-
tions (West et al., 1987). Even though this model gave excellent results
for a relatively small number of modes, the method is not universal since
the convergence of the power series is slow for the case of multi-mode
wave fields with typical spectral energy distributions.

In this study we consider only 1-D nonlinear waves. Such waves
were simulated numerically with a quasi-Lagrangian technique (Longuet-
Higgins and Cokelet, 1976), and with a Cauchy-type integral algorithm
(Dold, 1991). The performance of neither scheme was limited by wave
steepness, and both were capable of simulating the initial phase of wave
breaking (a phenomenon whose later stages are rotational and remain
extremely difficult to simulate directly). A method based on a Taylor
expansion of the Dirichlet-Neumann operator was developed by Craig
and Sulem (1993). The method was illustrated by computing evolution
of modulated wave packets and a low order approximation of the Stokes
wave for relatively short periods. However, the applicability of these
methods to simulating longer time scales is uncertain.

Our goal is to construct a numerical scheme for direct modeling of
1-D potential waves so that the effects of nonlinear interactions on time
scales much longer than the wave period may be analyzed. The approach
is based on a nonstationary conformal mapping which allows us to rewrite
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the equations of potential waves (which take into account the effects of
capillarity and finite depth) in a surface-following coordinate system,
where the Laplace equation retains its form, so that the original sys-
tem can be represented by two relatively simple evolutionary equations
(Section 2). These equations may be solved by using Fourier transform
method with high accuracy and computational efficiency. Section 3 deals
with stationary solutions of the system; a numerical method to obtain
stationary gravity (Stokes) and gravity-capillary waves is presented and
results of the computations are discussed. The numerical scheme for the
nonstationary equations is described in Section 4. The results of Sec-
tion 3, as well as mass, momentum and energy conservation criteria, are
used for validation of the nonstationary model (Section 5). In Section 6,
results of long-term model simulations are discussed, and spectral prop-
arties of the obtained wave fields are analyzed.

2. Equations

Consider the principal 2-D equations for potential waves written in Carte-
sian coordinates, i.e., the Laplace equation for the velocity potential @

and the two boundary conditions at the free surface z = h(z,¢): the
kinematic condition

h't + hI(I’;[: - q)z = D) (2)
and the Lagrange integral
®, + % (@2 +02) + h+p — oheo(1+h2) 22 =0, (3)

where p is the external surface pressure.!

The equations are to be solved in the domain
-0 <z <o, —H<z<h(z,t) . (4)

The variables @ and h are considered to be periodic with respect to z ,
the period being 2w, and a zero normal velocity condition at the bottom

is assumed:
. (e, 2= —-H#) =0. (5)

1Subscripts of independent, variables denote partial differentiation with respect to
this variable.
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Equations (1)—(3) are written in nondimensional form, with the fol-
lowing scales: length L, where 2rL is the (dimensional) period in the
horizontal, time 7 = L/2¢g=1/2 and the velocity potential L3/2g%/2 (g—
acceleration of gravity). The last term in eqn (3) describes the effect of
surface tension, and :

_F
g = Ewﬁ (6)
is a nondimensional parameter ( I' ~ 8 - 10~°m3s~2 is the kinematic co-
efficient of surface tension for water).

System (1)—(3) is solved as an initial value problem for the unknown
functions ® and h with given initial conditions ®(z,z = h(z,t = 0),t =
0) and h(z,t = 0). However, straightforward numerical integration of this
system is known to be computationally inefficient and, for time periods
much greater than the time scale 7, virtually impracticable. To make a
numerical solution feasible, we introduce a surface-following coordinate
system which conformally maps the original domain (4) onto the strip

—0<f<oo, —H<(LU, (7)
with a periodicity condition given as

I(§1C’T) = .'L'(£+2TF,C,T)+2‘H’
#(§,¢7) = z(§+2m, (),

where 7 is the new time coordinate, 7 = ¢. (Note that the mapping is
time-dependent, since it involves the surface height h.)

(8)

It can readily be shown that the required conformal mapping exists
and, due to periodicity condition (8), can be represented through Fourier
series:

_ cosh k(¢ + H)
T =&+ zp(7) + —;l,!gkzg:M,k;éu N-x(T) ik B0 Uk (§), (9)
sinh k(¢ + H)

z=C+mn(r)+ Z nk(T) 9r(£), (10)

—M<kZM k0 sinh kH

where 7). are the coefficients of Fourier expansion of the free surface (¢, 7)
with respect to the new horizontal coordinate &:

k()0 (£); (11)

—M<k<M
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. denotes the function

| coskE k>0
(8) = { sinké k<O (12)

ote that (9k)e = k9_x, and Y (AxUi)e = — L kA_9%); M is the trun-
tion number to be used in numerical integration (so far M = oo ig
sumed); zo(7) can be chosen arbitrarily, though it is convenient to
sume

zo(7) = 0. (13)
he lower boundary ¢ = —H cannot be chosen arbitrarily, since the
lation _

z(‘fsg = _H: T) = _H (14)

ust hold, which, after substituting expansion (10), yields:
A= Htnolr). (15)

nce 7)o is determined by the Fourier expansion (11), and, generally, is
1 unknown function of time, H also depends on time.

ue to the conformity of the mapping, Laplace equation (1) retains its
rm in (£, () coordinates. Standard derivations show that system (1)—(3)
n be written in the new coordinates as follows:

Oge + B =0 (16)

— 2y + Lezr = O (17)

- -
@, — I @gw, + 22,) B¢ + 577 (22 - )
+2+p — 0J "} (—zgeze + zgeme) = 0 (18)

here eqns (17) and (18) are written for the surface { = 0 (so that z =17
. represented by expansion (11)), and

J=xi+2=12+2 (19)

the Jacobian of the transformation. Boundary condition (5) readily

elds: _
®.(¢,¢(=~-H,7)=0. (20)
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The Laplace equation (16) with boundary condition (20) is solved via
Fourier expansion (which reduces system (16) — (18) to a 1-D problem):

b= ¥ (LA () (21)
—M<k<M cosh kH
where ¢ are Fourier coefficients of the surface potential ®(&,¢ = 0, 7).
Thus, eqns (17) and (18) constitute a closed system of prognostic equa-
tions for the surface functions z(¢,¢ = 0,7) = n(£,7) and (&,¢ = 0,7).
In principle, it can be written as a system of ordinary differential equa-
tions for the Fourier coefficients 7y, ¢ using (11) and the following for-
mulae which are easily obtained from (9}, (10), (12), (13), (15), (21):

(I)(&C = 0: T} = Z ¢k (T)'ﬂk(‘g) (22)
—M<k<M
Be(&C=0,1) == > ké_i(r)9(¢) (23)
B(6,¢=0,7)= > key(r) tanh (kH)0x(¢) (24)
—M<k<M
me(6,¢=0,7) =1+ Y kne(r)coth (kH)9:(6)  (25)
—M<k<M,k#£0
ZE(&, C = O?T) = - Zk kn-—k(T)ﬁk(g) (26)
Tee(6,¢=0,7) == > knm(r)coth (kH)0:(E)  (27)
—M<E<M k#£0
33 (f:C = O)T) F— Z kg'rfk(T)ﬁk (5) (28)
—M<k<M
e (6¢=01)= 3 du(r)0(é) (29)
—M<k<M

$T(£1C:0?T) = E

— M<k<M,k#D

: 7y Kkn-i(T)o(7)

(nk(f) coth (kH) o (k]—]’) )ﬁk{g)
(30)

z'r(‘fa C =0, T) = Z ??k(T)TBk(f) (31)

—M<k<M

System (17), (18) is not resolved with respect to the time derivative of
the surface elevation 7(£, 7). During numerical integration of the initial
value problem, the values of the time derivative can be obtained with a
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simple iterative algorithm making use of eqn (17) and Cauchy-Riemann
relations z-¢ = z;¢, Tr¢ = —z;¢. However, a more efficient approach may
be applied (V. Zakharov, private communication; see also Kuznetsoy
et al., 1994). Introducing complex variables p = & + i¢ and r(p,7) =
z(£,¢,7) +i2(£,(,7), we can rewrite the left-hand side of eqn (17) as

follows
Tr _ (-1
Im (Tp)czo_(J ‘I’f)c:o' | (32)

Note that due to conformity of the transformation, r(p, 7) is an analytic
function of p, and so are r; =z, + iz, 7, = z¢ + iz, and their ratio in
the left-hand side of relation (32). Therefore, if we denote

Tr

= = F(£’ Ca T) + lG(f: C:T)’ (33)

Tp
functions F' and G are bound by the Cauchy-Riemann relations:
FE = GC’ Fg = —‘Ge. (34)

Considering that G is a harmonic function of £ and (, and that it becomes
zero at the lower boundary ( = —H (because at that boundary z = —H ;
2, = 2¢ = 0), so that

P+ g= (%) . = (Yo (35)

we can write the following expansion:

_ sinh k(¢ + H)
G(é—a C} T) - _Mng’k#o Gk (T) it kﬂ ﬁk(é)ﬂ (36)
and relations (34) yield:
FEGD=hn+ 3 oun @t Hy 0 (g

—M<k<M k0 sinh kH

Function fy(7) can be found using assumption (13), which together with
(33) yields (for any ¢ and 7):

27 27
0 =f0 z,d ¢ :fo (Fze — Gog)de;
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substituting expansions (36), (37), (9), (10), and integrating the products
of the Fourier series, we obtain:

o=y X knogesinh (k). (38)
~M<k<Mk#0 .
Then if
9&7)=GE¢=0,7)= 3> g(n)%(9) (39)
—M<k<M k£0
is known,
fE&n)=FE(=0,7)=for)+ Y g_x(r) coth (kH)D ()

—M<k<M,k£0
(40)
is also known: f is a generalization of the Hilbert transform of g, which,
for k # 0, may be defined in Fourier space as
fr = g-xcoth (kH), gi = —f_jtanh (kH), (41)

whereas go = 0 and fp is defined by (38). Thus, we can replace eqn (17)
by explicit expressions for the time derivatives z, and z. which follow
from (33). Finally, eqns (17) and (18) can be rewritten as a system which
is resolved with respect to the time derivatives (here ¢ = 0):

Zr = Teg + sz (42)

1
®r = fO — 5J (P = BY) — 2 —p+ 0T (~zgeze + zene),  (43)
where according to (32),
_ (71
g= (J q)C)c:ﬂl,

[ is obtained from g according to (38)—(40), and the derivatives can be
expressed through Fourier series (22)-(29), (31) (expansion (30) is no
longer needed, since z, has been eliminated from the system).

(44)

Thus, the original system of equations is transformed into two evo-
lutionary equations (42), (43) which can be effectively solved using the
Fourier transform method (see Section 4).
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For deep water (H = o00), the coefficients in expansions (24), (25),
); (30), (38), (40), (41) become simpler, since tanh(kH) and coth(kT)
replaced by sign(k), and the terms with sinh~2(kH) vanish. In par-
lar, operator (41) becomes a conventional Hilbert transform, and (38)
sduced to fy = 0.

To include the case of pure capillary waves, it is convenient to use
ifferent scaling: L3/2T'~1/2 for time and LY/2TY2 for velocity poten-
- With the new nondimensional variables, eqns (43), (42) acquire the
»wing form:

2 = Teg+ 2 f (45)
. . Y. . i
Ap = j’@g = EJ 1(@; == @g) —az—p+ F 3/2(_*1.‘5525 2 Z&'QSE), (46)
rea=cL
Stationary solutions

the stationary problem, the method of conformal mapping is a well-
~n approach based on using the velocity potential ® and the stream
tion ¥ as the independent variables (e.g. Crapper, 1984). It is easy
aow that in this case

®=—cf+B, T=c(+Ty, (47)

re —c is the velocity of the mean flow, ®, = —, and ®, = ¥, are the
zontal and the vertical Cartesian velocity components respectively,
Py and Ty are constants.

for the stationary version of system (1)-(3) (or (16)-(18)) to describe
ressive waves, the periodicity condition on @, which implies a zero
n flow velocity, must be replaced by the weaker condition of period-
of the velocity components, i.e., of the spatial derivatives of ®. In a
dinate system moving with the wave’s phase velocity ¢, the mean flow
2ity is equal to —c¢, and the velocity potential ® is given by relations
where ®; must be allowed to depend on time (since stationarity is
med for the velocity field rather than the velocity potential). Con-
ently, with the external pressure p = 0, system (16)—(18) is reduced
1e equation written for the surface ¢ = 0:

1
§C2J_1 + 2z — GJ73/2(~$§§ZE + z&xf) =a (48)
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where a = —‘d‘f’r , and since the left-hand side of (48) does not depend
on time, a is a constant (so that the dependence of &, on 7 may only be
linear).

In this work, eqn (48) is solved numerically using Fourier expansions
(9), (10) for = and z and (25)-(28) for the derivatives in (48) and (19).
The nonlinearities are evaluated at gridpoints £¢) = 2x(j — 1)/N, N be-
ing the total number of gridpoints. This approach, developed by Orszag
(1970) and Eliassen et al. (1970), is known as the transform method and
is discussed in more detail in Section 4.

Note that because o is a factor in a term having the highest differ-
ential order, we may face effects of singularity for small o. Indeed, we
had to develop two different schemes for the cases ‘of pure gravity and
gravity-capillary waves, and it will be seen that in the latter case the
numerical solution does not approach a Stokes wave as o decreases.

Below we consider only the case of deep water (H = co); however,
generalization of the algorithms described in the following subsections is
straightforward for the case of a finite depth.

3.1 Pure gravity waves

With o = 0, the solutions of eqn (48) are Stokes waves. A method based

on expansion of the Fourier coefficients of the surface height in power
series of the wave amplitude was initially proposed by Stokes (1847,

1880) who in his latter work obtained a fifth-order approximation. In
recent studies, the method has been further developed into a computer-
oriented recursive scheme which produces consecutive power expansion
coefficients; Drennan et al. (1992) carried out the power series calcula-
tions up to 170 terms.

Here, the solutions in the form of Fourier expansion coeficients for the
surface height were sought numerically with an iterative algorithm. The
conformal mapping with surface boundary condition (48) is determined
by the coefficients 7;, through the relationships

(€, ) =€+ > n-rexp(kC)I(€) (49)

~M<k<M,k#0

TR AT e




1ear Ocean Waves

A60=C+ T mexp(k)9(6) (50)
—~M<k<M
the stationary deep-water versions of expansions (9), (10).
), formulae (49), (50) may serve as a parametric representa-
surface.

2 gravity waves, eqn (48) can be rewritten in the form
" :
log (562) —log J = log(a — z). (51)
1 =log g—; with 7, p defined as in (32), it can be seen that

log J = 2Re(w), z, =Im (expw). (52)

e Fourier expansion for logJ is known, Im(w) (also in the
ce) can be found via the Hilbert transform as in the second of
es (41), after which w and then expw can be calculated at the
This yields z, and after finding the corresponding Fourier
by direct Fourier transform, z can be obtained by integration
space. Thus, z can be easily found if log J is known. This
» reduce the differential relationship (51) to an equation with
sperator, which may be solved by a simple iterative procedure.

1g that z is an even function of £ , it is convenient to choose
1

s=5(ogJ(E=0,(=0)~logJ(€=m(=0) (53)

meter determining the amplitude of the wave (in linear ap-

1, § is equal to the amplitude). With x™ denoting the value

ible ) on nth iteration, the scheme can be written as follows:

en =0, logJ% = 2s e cos € (this is the solution of the lin-
slem).

en log J™ use Hilbert transform (41), complex exponent cal-
d integration in Fourier space to find zI™ as described above.
mum surface gridpoint value of | 2" — 2[*=1 | is less than
ved accuracy e, the iterations are completed, and 2z is an
e solution within the accuracy given.

G3. Let

a =

This will ensure re]
gridpoint values of

log J[n-l-l]
where ()o denotes i
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The last term in
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Equality (54) is bas
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1 /32), it can be seen that

7 (expw). (52)

tmown, Im(w) (dlso in the

;ransform as in the second of

- w can be calculated at the
2 the corresponding Fourier
a be obtained by integration
wd if logJ is known. This
iip (51) to an equation with

¢ simple Iterative procedure.
. it is convenient to choose
i¢=m,(=0) (53)

2 of the wave (in linear ap-
V:th xI"! denoting the value
i can be written as follows:

it is the solution of the lin-

(#41), complex exponent cal-
find 2[" as described above.
| 27 — 21 | ig less than
> completed, and 2" is an
FETL:
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a = g+l = eész[n](f =0) - 2ll(¢ = )
- - 4s :
g% ]
This will ensure relation (53) for the next iteration. Calculate sufrace
gridpoint values of '

log JI**1 = — log(alm*1 — 271) 4 (log(al™+1 — 2y, (54)
where ()o denotes mean over £ , i.e. Oth Fourier coeficient.

G4. Tind the Fourier expansion of log JI**!) by a Fourier transform; let
n=mn+1 and return to step G2.

The last term in (54) allows us to find the phase velocity on (n+1)-st
iteration: in accordance with eqn (51), this term is equal to log (%(c["“])?).
Equality (54) is based on the fact that the mean value of log J over ¢
is zero, which follows from the first of relations (52), as w — 0 when
(— —co.

Figure 1 illustrates some results of the described procedure for M =
384, N = 1728, ¢ = 107" . The values of the parameter s for the given
profiles are 0.04, 0.08, 0.16, 0.32, 1.06. The number of iterations varied
from 28 for s = 0.04 to 44 for 5 = 1.06. For s = 1.06, the amplitude

A=50E=0) —ne=m) = S(h(z =0)~hw=m))  (55)

is approximately 0.4374 which is close to that of Stokes wave with max-
imum steepness (about 0.443 according to Longuet-Higgins, 1975).

Theoretically, s can be arbitrarily large; s = oo for the steepest Stokes
wave whose crest constitutes an angle of 120° and thus is a singularity
with J(€ = 0,( = 0) = co. The algorithm does converge for values of s
much larger than those used in Fig. 1; however, when the profile becomes
close to that of the steepesi wave, convergence of the Fourier series slows
down dramatically, and at the same time, due to strong nonlinearities,
the accuracy of the transform method decreases sharply. As a result,
for large s the numerical solution contains spurious oscillations; with the
values of M, N indicated above, for s > 1.06, the maximum slope of the
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ned profile exceeds 30°, which is a theoretical maximum,

T T T T T T T i

B 1.3 4.2 2.8 8.4 3.8 A8 58 57 &.9
X

" Stokes waves: Curve 1 — A = 0.0399, 2 — 4 = 0.0793, 3 -
0.2806, 5 - A = 0.4374.

tion convergence criterium ¢ is small enough, the error
‘he truncation error, which can be evaluated by com-
»btained with different resolutions. Such a comparison
r three resolutions: M = 384, N = 1728; M = 192,
16, N = 432. The results are illustrated in Table 1
alue of the amplitude A (as defined in (55)) obtained
n number M; M AX Dy, a, is the maximum gridpoint
nce

= (($M1 = :'I'—Mz)2 + (ZM1 - ZM2)2) i ) (56)

), 2m = zy(€) is the numerical solution for z, z at

¢ = 0 obtained with the t

RMSDyy,
is the root mean square d:

Table 1 shows that for
very small for all tested re
M; the convergence decelc
the steepest wave. For all ¢
the wave’s crest.

Table 1: Comparison of Stokes
tions

S AE

0.4 0.32
0.6 0.3%
0.8 0.42
1.0 0.43
1.2 0.43
1.8 0.44¢
2.0 043

S RMSDgs,gggi RA

04 1.3-10712 1.5
0.6 3.9-105 3.0
0.8 48-10~* 3.0
1.0 3.0-10°3 6.7
1.2 6.8-10°° 2.2
1.8 2.1-1072 7.6
2.0 26-10°2 9.7

3.2 Gravity-capillary w.

An iterative algorithm sim
out to obtain numerical sol
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- which is & theoretical maximum ¢ = 0 obtained with the truncation number M

1 po2= 1/2
P B RMS D = (5= [ ROV a(a(e))) (57)
is the root mean square difference over z coordinéte.

Table 1 shows that for amplitudes 4 < 0.4 the truncation errors are
very small for all tested resolutions and decrease rapidly with increasing
M; the convergence decelerates when the amplitude approaches that of
the steepest wave. For all examples, the maximum error was located near
the wave’s crest.

Table 1: Comparison of Stoles wave profiles calculated with different spectral resolu-
tions

§  Asps Ags — Assa Argy — Aspa

0.4 03273 42-107® 16.10-15
06 03988 15-107% 1.1.10-°
0.8 0.4264 8.3-105 3.2.10-6
1.0 04360 —1.4-10* —-1.2.10-¢
1.2 0.4394 —1.1-10"3% —1.3.-10°3
1.8 0.4405 —55.10% —3.0.10-3
2.0 04393 —6.9-.10"® —3.9.10-3

3.8 4.4 5.9 57 6.3

A= 00399, 2 - A = 00783, 3 - 8 RMSDgyssq RMSDiggges MAX Dogges MAX Digyze4
04 13-1002 15.10"15 3.7-10~ 2 2.2.10°15
0.6 3.9-10° 3.0.10°8 1.7-10°5 i.3-10°8
0.8 4.8.107¢ 3.0-10-5 2.3 1078 1.7-10*
1.0 3.0-10°3 6.7-10"4 1.1-10-2 3.3-10°3
1.2 6.8-1073 2.2-1073 2.1-10-% 9.3-1073
1.8 2.1-10°2 7.6-1073 4.9.1072 2.6-1072
2.0 2.6-1072 9.7-1078 5.9.-102 3.1-1072

1m ¢ is small enough, the error
ich can be evaluated by com-
esolutions. Such a comparison
=384, N = 1728; M = 192,
Its are illustrated in Table 1,

(as defined in (55)) obtained
i, 18 the maximum gridpoint

3.2 Gravity-capillary waves

ay1/2

-z : 56
) ) (5e) An iterative algorithm similar to that described above has been worked
wemerical solution for z, z at out to obtain numerical solutions of eqn (48) with ¢ > 0. Here, we again

T T e s S e e e R s e
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:e height is an even function of z, and hence of ¢,

;orithm it is convenient to rewrite eqn (48) in the

¥ ) 1

| Q—HJ'l(—xffze + zgeme) =0 (58)

aa/(a+1); & = a/(a+1) = /(1 + o). Note
the actual phase velocity to the phase velocity of

1 1/2 i & 1/2
== k ==-+—- 59
(k i ) (k + a) 8)
1; the convenience of representing the results in
‘hat it does not depend on the choice of the time

it term on the left-hand side of eqn (58), it can be

zgewg) = Im (3—1;) =Im(we) = (Im w)e  (60)

he same meaning as in relations (52). Also, if we
of the surface height over the z coordinate is zero,
the following choice of the 0th Fourier coefficient:

1
m=—3 > kng, (61)

1<k<M
d ¢, are bound by the relationship:

= %cf (62)
35, this property directly follows from results by
3); for the general case of gravity-capillary waves,
s, as it can be deduced from the observation that
ary term in eqn (3) over x is zero.

——

Relations (60), (62) and @

—2(a+1)a, sinh(R
Choosing

as the parameter determining
it is equal to the amplitude fo
mulate the iteration scheme a

GCl1. Assume n = 0, (Im w)['
s ; 3
linearized problem).

GC2. For given (Im w)[E"'] .

and a Hilbert transform (as in
at each gridpoint, then find 2l
according to the second relati
termined by relation (61). If
| 2" — 2IP=1 | is less than the
completed, and 2/ is an appro

GC3. Calculate surface values
eqn (63), by substituting w =
Similarly to step G3, a, = al

holds for w = wh+1].
i o 1P
2(a+1) si1

where

(€)= 2(g, ¢ =«

GC4. Find the Fourier expans
let n =n + 1 and return to ste

Convergence of the algorith
on the parameter S for differe
the wave profiles obtained for !

-~ 1
A= 5 (MaxUSjSNn({
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nction of #, and hence of £, Relations (60), (62) and (52) allow us to rewrite eqn (58) as follows:

i t0 rewrite eqn (48) in the —2(a+ 1)a. sinh(Re w) + aexp(Re w)z = (Im w),. (63)

H—mgre + zgme) =0 (58)

(e +1) = E/(1 4 0). Note
sity to the phase velocity of

4 E) 1/2 (59)

vapresenting the results in
d on the choice of the time

d side of egn (58), it can be

im(wg) = (Im w)e  (60)

i relations (52). Also, if we
ver the z coordinate is zero,
“the Oth Fourier coeflicient:

= (61)

e
relationship:
(62)
tly follows from results by
of gravity-capillary waves,

| from the observation that
'r T 18 zero.

Choosing .
§=—2(mue(E=0,(=0)~Imuge=m¢=0) (64

as the parameter determining the wave amplitude (like s in relation (53),
it is equal to the amplitude for the linearized problem), we can now for-
mulate the iteration scheme as follows:

GCi. Assume n =0, (im 'w)g]] = —8ef cos¢ (this is the solution of the
linearized problem).

GC2. For given (Im w)[g‘] , find w in Fourier space by integration
and a Hilbert transform (as in the first of equalitics (41)); find exp(wl™)
at each gridpoint, then find 2/™ by a Fourier transform and integration
according to the second relation (52), with the integration constant de-
termined by relation (61). If the maximum surface gridpoint value of
| 27 — 2I*=11 | is legs than the prescribed accuracy e, the iterations are
completed, and 2 is an approximate solution within the accuracy given.

GC3. Calculate surface values of (Im w)gn‘:’l} as the right-hand side of
eqn (63), by substituting w = wll | 2 = 207 into the lefi-hand side.

' Similarly to step G3, a, = eV must be chosen so that relation (64)

holds for w = w+1l;

gt — @ 1"(0) exp(RM(0)) — nlel(r) exp(Rl(m))
T 2e+1) sinh(R["(0)) — sinh(RPI(x))

where

(65)

™€) = (¢, ¢ = 0), RI(E) = Re wll(g, ¢ = 0).

GC4. Find the Fourier expansion of (Im w)é""'l] by a Fourier transform;
let n =n+ 1 and return to step GC2.

Convergence of the algorithm and the dependence of wave amplitude
on the parameter 5 for different o are characterized by Table 2. Since
the wave profiles obtained for large o have two maxima, values of

A= % (Maxocj<nn(€ = £97) — Ming<j<nm(€ = 5@)) (66)
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veniently, uses 4 instead of S as a wave parameter. An important ad-
vantage of the modified version iz that its domain of convergence in the
(e, A) plane is notably larger than that of the original scheme GC1-GC4;
however, computationally it is less efficient than the latter, as it requires
nested calculations to numerically determine values of a, for each itera
tion, while in step GC3 a, is readily yielded by formula (85).

@_\EﬂE’!..
-9.10
-0.29
-@.36
~@.,48
~8.50

-@.68

-@ .86 - 1
.8 B.6 T3 "9 2.8 3.7 3.8 4.4 5@ 5T a2

Figure 2: Profiles of gravity-capillary waves, 4 = 0.4. Curve 1 —a = 0 (Crapper’s
wave),2-a=1,3-a=2,4—-a=3.

From Table 2 and Figs 2 and 3, it can be seen that with increasing
a (i.e., with the capillarity coefficient o decreasing), the wave profiles do
not approach those of pure gravity waves, but rather shift their energy to
smaller scales where capillarity effects are more pronounced. Beginning
with o = 2, two maxima emerge, so that 2 = 0 becomes a local minimum
(the absolute minimum being always at 2 = = ); at the same time the
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of convergence decreases rapidly, especially for small amplitudes
r those values of @ which ensure equal linear phase velocities (59)
0 neighboring wavenumbers k, k + 1, namely o = 2 (k = 1) and
(k =2). '

ither the scheme GC1-GC4 nor its aforementioned modification
rged with @ > 6; however, the modified scheme converged for A
+ considerably larger than those indicated in Table 2.

3: Profiles of gravity-capillary waves, A =0.1 . Curve 1 —a =0 (Crapper’s
2-a=14,3-a=2,4-a=3,5-a=4,6-a=5T-a=6.

\e dependence of the normalized phase velocity ¢, on o = 1/q, as
ated by Fig. 4, is consistent with the behavior of the corresponding
5. When o decreases but remains positive, c, decreases and does
»proach its value at sigma=0. The latter is always greater than 1

|
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increasing fun
function of A
phase velocity
minimum valy

Pl

=3, i
M. gt

Figure 4: Norma
capillarity coeffic

For most ¢
with results ok
maximum diffe
ceeded 1.2 10




¥, especially for small amplitudes
: equal linear phase velocities (59)

%+ 1, namely @ = 2 (k = 1) and
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8

4,6-—a=57T-a=6.

phase velocity ¢, on o = 1/0, as
;e behavior of the corresponding
s positive, ¢, decreases and does
i latter is always greater than 1
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and, except for a small interval in the vicinity of the maximum A , is an
increasing fupction of ﬁ, while for o 7 0 the calculated ¢, is a decreasing
function of A and always less than 1. In fact, for small values of A, the
phase velocity corresponding to a given o turns out to be close to the
minimum value of ¢ (relation (59)) over £,

8.2

3.1
g g5

B.6 0.2 8.4 9.6 ¢.8 1.8 1.2 1.4 1.6 1.8 2.4

a

Figure 4: Normalized phase velocity ¢, = ¢/v/1+c as a function of nondimensional
capillarity coefficient 0. Wave amplitudes A are indicated at the respective curves.

For most cases represented in Table 2, a comparison was performed
with results obtained for a higher resolution (M = 384, N = 1728). The
maximum difference between surface profiles as defined in (56) never ex-
ceeded 1.2+ 107", which means that the truncation errors are negligible.

s T L
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illary waves

ary waves, which are described by eqn (58) if we formally
2 solution is represented by a simple formula (Crapper,
1otation, it can be written as

_ 4dgsin
z(§,¢) —§+ma (67)
_ dg(cosé—q) 1
() =C g — A, (68)
—2 4+ /4 + A2
g — be C, b - —m.—;' (69)
A
), €, @, are bound by the following relationships:
. 4b 1 1
= A= S L — = = —. T
s bz: 26* Qe ;—4:+ A2 ( 0)

n (68) may be any constant but here it is chosen to satisfy

ion (67)—(70) was used as another means to validate scheme
h o = 0. For all tested amplitudes, up to the maximum
tude (e.g., Crapper, 1984), the maximum difference be-
erical (M = 96) and the exact solutions as defined in (56)
it 19,

1 of the nonstationary equations

rroximation of system (42), (43) we use a Galerkin-type
| method based on Fourier expansion of the prognostic
a finite truncation number M. The system is thus reduced
nary differential equations for 4M + 2 Fourier coefficients
M < k< M:

:Ek(n—M:n—M—l:---17]M3¢—M1¢—M—1)'“:¢M) (71)

=Fk(n—M:n—M—1:'"7nMs ¢—M1¢—M—1a'-'v ¢M) (72)

where Ej, Fj are, respect
right-hand sides of eqns (

To calculate Ey,, F}, as
mulae (23)—(28) are used
uated exactly), and the :
transform method (Orsz
evaluation on a spatial gr
tion of its arguments whi
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Fourier transforms are pe;
are evaluated at each gr
the function Y are four
27(j — 1)/N, and N is t}
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imum mean square appic
need to be evaluated exs
must choose

where v is the maximumr
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is of infinite order so tha:
met. However, numerical
N ensuring exact evaluat
a further increase in N
numerical solution. For n

However high the spe
grations one must paran
of the spectrum (k > M
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tion terms were added tc
this purpose:




eqn (58) if we formally
iple formula (Crapper,

px (67)
%A"’, (68)
2 (69)

: relationships:

1

ViT A (70)

& it is chosen to satisfy

eans to validate scheme

3, up to the maximum

aximum difference be-
sions as defined in (56)

tations

¢ use a Galerkin-type
sion of the prognostic
system is thus reduced
+ 2 Fourier coefficients

~1 <=3 D0E) (71)

—17---:¢M) (72)
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~ where Ej, Fy, are, respectively, the Fourier expansion coefficients for the

right-hand sides of eqns (42) and (43) as functions of &.

To calculate Ey, F, as functions of the prognostic variables ny, ¢, for-
mulae (23)-(28) are used for the spatial derivatives (which are thus eval-
uated exactly), and the nonlinearities are calculated with the so-called
transform method (Orszag, 1970; Eliassen et al., 1970), i.e., by their
evaluation on a spatial grid. If Y'(u(£), v(€), w(£),...) is a nonlinear func-
tion of its arguments which are represented by their Fourier expansions,
gridpoint values w(£()), v(¢W), w(¢W).... are first calculated, i.e., inverse
Fourier transforms are performed; then Y1) = ¥ (u(¢W), »(€), w(£@), ...)
are evaluated at each gridpoint; finally, the Fourier coefficients Y} of
the function Y are found by direct Fourier transform. Here ¢ =
2m(j — 1)/N, and N is the number of gridpoints.

For the method to be a purely Galerkin one, i.e., to ensure the min-
imum mean square approximation error, the Fourier coefficients Ej, Fj
need to be evaluated exactly for —M < k < M. For this purpose, we
must choose

N>w+1)M (73)

where v is the maximum order of nonlinearities. Since the right-hand
sides of eqns (42), (43) include division by the Jacobian, the nonlinearity
is of infinite order so that, strictly, the above condition on N cannot be
met. However, numerical integrations show that if we choose a value of
N ensuring exact evaluation of the cubic nonlinearities (v = 3 in (73)),
a further increase in N (with fixed M) virtually does not impact the
numerical solution. For most runs, M = 96 and N = 432 were used.

However high tlie spectral resolution might be, for long-term inte-
grations one must parameterize the energy flux into the severed part
of the spectrum (k > M); otherwise, spurious energy accumulation at
large wavenumbers will corrupt the numerical solution. Simple dissipa-
tion terms were added to the right-hand sides of eqns (71) and (72) for
this purpose:

e = Ex — pemie (74)

bk = Fi — pdy ; _ (75)

A, L
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2
e = { o) 1y (76)
0 otherwise
and r = 0.25 were chosen for most runs; the sensi-
ts to reasonable variations of k; and r was low. The
vely absorbs the energy at wavenumbers close to the
T M while leaving longer waves virtually intact (note

s —kq < k < ky are not affected).
-ation, the fourth-order Runge-Kutta scheme was used.

. of the model

lutions dealt with in Section 3 were used for validation
ry model (system (42), (43)). In the model’s coordinate
the mean flow, progressive waves were simulated start-
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Table 3: List of numerical experiments (G — pure gravity waves; C'~ pure capillary

" waves; GC' - gravity-capillary waves; A — amplitude of stationary wave (55); PS —

power spectrum (83) with parameters kg , Ag ; RP — random phases; a; — amplitude
of kth Fourier component of surface height. The last column indicates nonzero Fourier
components of the initial conditions, in £-coordinate)

No. Type Ingtial conditions Modes
1 i Crapper's wave, A = 0.7 All
2 G Stokes wave, A =0.3 All
3 GC,0=04  Stationary GC wave, A = 0.3 All
4 GC,0=0.05 PS, RP, k=1, A;=0.1 1-—25
5 G Lake & Yuen waves, az = as =0.04 3,5
6 G ~ White noise, ax = 0.001 1-25
7T G " PS, RP, kg =5, Ay =0.01 1-25
8 GC,0=0.005 PS, RP, ky =5, Ay =0.01 1-25
9 C PS, RP, k9:5, A0=001 1—25
10 G Stokes wave, A = 0.3, All+
+ white noise, ar = 0.001 15— 39

The instantaneous phase velocity of the kth wave component may be
calculated as follows:

i M—kTk — MkT—k
Clk)=M\ = ——7"—, (77)
(&) k(i + %)
where 7, are the Fourier expansion coefficients of the surface as defined
by expansion (11), and A are the phases:

&)= Y 1R+ cos (k(€ — A(r))).

0<k<M

If there is only one wavenumber—frequency spectrum component corre-
sponding to wavenumber £k, i.e., if each Fourier component of the sur-
face propagates with a single phase velocity, formula (77) yields a con-
stant value of C for each k. In our case of progressive waves retaining
their shapes, this value is the same for all k. For arbitrary wave fields,
there may be many modes (wavenumber—frequency spectrum compo-
nents) which have the same wavenumber but propagate with different
phase speed due to nonlinear effects, and even in the case of linear
waves there are, generally, two kth modes propagating in opposite di-
rections with the same absolute speed. In such cases, formula (77) yields
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age phase velocity of the modes, which generally vary in
scribed runs, modes moving in the opposite direction were
ag the integration because of truncation errors. The am-
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us phase velocities, whose temporal means and standard
siven in Table 4 for the first 15 modes.
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Jrapper’s, Stokes and gravity-capillary progressive waves (C is the
icity, i.e. that obtained for the stationary solution)

waves Stokes waves GC waves

).971524 A=0.3, C =1.046040 A = 0.3, C =1.160514

1-107%) 1.045997 (2 - 10-9) 1.160514 (2 - 10-5)
1-107%) 1.045940 (2 - 10-5) 1.160513 (2 - 10-5)
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-107%) 1.042795 (2 - 10-5) 1.160470 (2 - 10-9)
.+107%) 1.042281 (2 - 10-5) 1.160463 (2 - 10-5)
1 1074) 1.041730 (2 - 10-5) 1.160456 (2 - 10-5)

d phase velocities are very close to their values obtained
7 solutions (also given in Table 4); although they slightly
reasing the wavenumber, their mean errors and standard
1all for all the three types of waves. Since conservation
s (not shown) was also very accurate (the deviations of
1g the simulations from their initial values were always
r the Stokes wave and less than 10~! for the capillary

-and gravity-capillar

and remained consis;
not noticeably chan,
implies that these we
that the numerical s
tions of the original

Another criterior
invariants during the

horizontal momentur

and energy F = E,

is the kinetic energy,

is the potential energ
E

is the potential ener
tained by transform:
for the invariants int
the horizontal axis.

An example of th
resented in Fig. 5 for
The initial surface w:
linear modes with an

ar =+



| which generally vary.in
| opposite direction were
| weation errors. The am-
. magnitude smaller than
| nents of the simulated
| ts and perturbations of
2! means and standard
| Jdes.

1e phase velocities for the
' Jrogressive waves (C is the
'y solution)

GC waves
- A=0.3, C=1.160514

1.160514 (2 - 10-5)
1.160513 (2 - 1075)
1.160512 (2 - 10-5)
1.160510 (2 - 1075)
1.160507 (2 - 1073)
1.160505 (2 - 1075)
1.160501 (2 - 105)
1.160497 (2 - 1075)
1.160493 (2 - 10-5)
1.160488 (2 - 107%)

1.160482 (2 - 10-5)

1.160476 (2 - 10-%)

1.160470 (2 - 10~5)
1.160463 (2 - 107%)
1.160456 (2 - 1075)

their values obtained
lthough they slightly
a errors and standard
i. Since conservation
te (the deviations of
1@ values were always
i=1! for the capillary

Nonlinear Ocean Waves 233

and gravity-capillary waves), the modes retained their. initial energies
and remained consistent in phase; consequently, the simulated waves did
not noticeably change their shapes during the integration. This result
implies that these waves are stable with respect to truncation errors, and
that the numerical solutions yielded by the model approximate the solu-
tions of the original differential equations with high accuracy.

Another criterion of model accuracy is conservation of the integral
invariants during the integration, i.e. of volume

2
V = (21) [D " 2zede, (78)
horizontal momentum
=@ [™ 4zd (79)
= (2m)! [ gz,
and energy E = Ex + Epg + Epr , where
27
Bie = (2m)™ [ ppcde (80)
is the kinetic energy,
2
EPG = (271')_1./0 szxfdf (81)

is the potential energy of gravity, and

Ber = (2m) ™ [ (J72 ~ 1) (82)

is the potential energy of surface tension. Formulae (78)—(82) are ob-
tained by transformation of standard Cartesian-coordinate expressions

for the invariants into (¢, ¢) coordinates and refer to a unit length along
the horizontal axis.

An example of the temporal evolution of Ex, Ep, Er, and E is rep-
resented in Fig. 5 for the case of gravity-capillary waves with ¢ = 0.05.
The initial surface was chosen in the form of a superposition of M, =25
linear modes with amplitudes a;, assigned according to

aﬁ{Ao(f;)P ko Sk <Ko+ Mp —1 (53)
0 otherwise
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theory that this is ensured by the relations:
I 1+ ok?
s = b, by = sign(k)y| ————=- 85)
o1 Tl~ks  Of g‘ﬂ( ) kianh(kH) ( )

For the calculations represented in Fig. 5, ¢ = 0.05, Ag = 0.1,
P=-3 k=1, My =25 and H = co (deep water). The horizon-
tal momentum I and the volume V were conserved with relative error
margins of the order of 10™'® and 10~ respectively. From Fig. 5 it
can be seen that while the energy components Fg, Fpe, and Epr show
significant fluctuations, their sum nearly conserves; its slow decrease is
due to damping at high wavenumbers. Similar resulis were obtained for
a number of other test simulations, including ones with a finite depth A,

The results described in this section suggest that the model can suc-
cessfully simulate evolution of multi-component wave fields.

6. Results of the simulations

The prograssive gravity, capillary, and gravity-capillary waves dealt with
in Sections 3 and 5 represent a very special case of nonlinear interactions;
they consist of Fourier modes which, rather than obey the linear disper-
sion relation (59), propagate with one and the same phase speed. It is
evident that similar effects may also be observed in more general situa-
tions: due to the impact of nonlinearity, a multi-mode wave motion can-
not be represented as a superposition of Fourier modes propagating with
their linear phase speeds; moreover, a specific wavenumber, generally, is
not associated with any single phase speed. Perhaps the most striking
manifestation of nonlinearity is that some shorter waves propagate with

“bound”) components was clearly demonstrated in many laboratory and
observational studies (Yuen and Lake, 1982). Various explanations have
been proposed for this phenomenon, including wind-wave and wave—
current coupling, but Lake and Yuen (1978) found that this effect is
mainly due to nonlinearity of the waves themselves. Realistic wave fields
contain both types of waves, free and bound, for the same wavenumber,
and the “observed” phase velocities reflect a combined effect of the two.
Partitioning of the energy between these types of waves depends on the
wave spectrum, whose shape is influenced by external forcing. A the-
oretical explanation of this effect based on Zakharov’s (1968) equation
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high wavenumbers. The energy of the 3rd mode is nearly conserved but
the energy of the 5th mode (which was initially equal to that of the 3rd
mode) is considerably less. ‘ ,

5 e -

log1gS¥(k)

-1@.

Figure 6: Time-averaged wavenumber spectra S*(k) for 6 consecutive time intervals
of length 67 = 167, Exp. 5.

In Fig. 7, temporal means and standard deviations of the instanta-
neous phase velocities (77) are shown. It is seen that the linear dispersion
relation is observed only for wavenumbers 2 < k < 5. For k > 5, the
waves propagate significantly faster than the linear waves but slower than
the primary waves. This effect is clearly pronounced only for the tempo-
ral means of the phase velocities; the instantaneous values vary highly (as

pointed out in Chalikov and Liberman, 1991), which is reflected by large
standard deviations for wavenumbers k > 5. This scattering is caused

by the presence of both bound and free waves.
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spectra, and the maximum resolved frequency ( w = 7 /0.08 for this run)
far exceeded any possible “physical” value of w and thus rendered the
transforms’ aliasing error negligible.

.long"‘(w)

20. T T T T T T 5 T T 0.8

Jbs: o=

X %W‘M T

€
iy
e

longk(k)

‘

Figure 8: Time-averaged spectral characteristics for the period of ér = 1000, Exp.
5. Curve 1 - linear dispersion relation w® = %, the other parabolas — w? = nk, k =
1,2,...,8. The contour lines of log;p S(k,w) (wavenumber—frequency spectrum) are
seen as concatenated in patches. Curve 2 is log; S¥(k) (wavenumber spectrum, right
scale), Curve 3 is log;o 5% (w) (frequency spectrum, top scale).

The most remarkable feature of the wavenumber—frequency spectrum
is that it is split into a set of branches in a regular way. This effect is
well pronounced for the waves propagating in the direction prescribed
originally by using relations (85) (k¥ > 0 in Fig. 8), but it is also no-
ticeable for the waves moving in the opposite direction, which were not
present in the initial conditions (& < 0 in Fig. 8 where the sign of k
is determined by the sign of the component’s phase velocity, while w is
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Each of the branches follows relation (86) closely at lower wavenum-
bers &k and tends to straighten ai higher wavenumbers so that, with k
increasing, the group velocity appears to tend to a constant whose value
is the same for all the branches. Along with this set of branches, there
are also other patterns which, despite their relatively low energy, show a
notably regular discrete structure.

1.8 ] T T T T T T T T

Figure 10: Sare as in Fig. 7 but for Exp. 6 (initial conditions approximating white
noise).

Another representation of the wavenumber—{requency spectrum can
be obtained through normalizing each value of S(k,w) by S%(k) (which
for a given k is the spectral density integrated over w). The normalized
spectrum (Fig. 9), which characterizes the fractional energy distribution
over frequencies for each wavenumber, exhibits up to 13 branches of the
type described above. A most peculiar feature of the spectrum, clearly
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the amplitudes of the izfitia]ly assigned waves were small, these waves
nearly obey the linear theory: their phase velocities are close to the lin-
ear ones and have small standard deviations. The waves produced by
the nonlinear interactions (k¥ > 25) again propagate faster than linear
waves. In the wavenumber-frequency spectrum (Fig. 11), only the first
two (n = 1, where most of the energy is concentrated, and n = 2) of the
“main branches” approximated by (86) are seen. The remaining part of
the energy is small, and, again, most of it is concentrated near a straight
line passing through the origin, while the remainder is distributed along
other regularly located curves. Further investigations are needed for ex-
planation of these featurss.

log105*(w)

[oglek(k)

Figure 12: Same spectral characteristics as in Fig. 8 but for Exp. 7 (initial conditions
with spectrum (83) approximating real waves).

Another run (Exp. 7), which also differed from the previously de-
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wavenumber is shown in Fig. 13.
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Figure 14: Same as Fig. 6 but for Fxp. 8.

Ag in the vuns with pure gravity waves, the lower wavenumbers tend
to follow the linear dispersion relation (77), though with considerable
scattering, while the shorter waves, which are mostly generated by the
ronlinear interactions, tend to assume the phase velocities which are
characteristic for longer waves and are in this case lower than those given
by the linear theory. The wavenumber spectrum, whose temporal evolu-
tion is shown in Fig. 14 in the same way as in Fig. 6 for Exp. 5 and
whose mean over the period of integration is represented by Curve 2 in
Fig. 15, shows a greater nonlinear energy flux to higher wavenumbers
than in the case of pure gravity waves. This is manifested in a much
less steep slope of the curve, compared to the corresponding results of
the previous run (Fig. 12, Curve 6), which was performed with the same
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(g)i%w(%)s, (87)

where n =1 for the free (carrying) waves and n = 2,3, ... for the bound
waves. However, the branches appear to merge with each other.

Figure 16: Same as in Fig. 6 but for Exp. 0 (capillary waves), 67 = 16.7.

Results of simulation of pure capillary waves (Exp. 9, @ = 0 in eqn
(46)) are shown in Figs 16 and 17 (the same spectral characteristics as
in Figs 14 and 15 respectively). The initial values of surface elevation
were the same as in Exps 7 and 8; the period of integration was 7 = 100,
and the time step A7 = 0.001. It is remarkable that the slope of the
wavenumber spectrum is much closer to that obtained for pure gravity
waves (Exp. 7) than to that of gravity-capillary waves (Exp. 8). The
wavenumber—frequency spectrum agrees well with the linear dispersion




1 Waves

Curve 1); however, below the curve is what appears
iain branches” corresponding to bound waves and

= (88)

ing from (87) with the gravity term omitted and
i an additional set of waves above the curve which
l-rectilinear” patterns observed in the pure gravity
es 8, 9, 11, 12 and 17 may suggest the hypothesis
'orrespond to waves which, through nonlinear inter-
1 shorter waves, are forced to propagate with the
e latter; further extensive simulations are needed to

]Ogl 0 Sk(k)

ig. 8 but for Exp. 9 (capillary waves), with Curve 1 being
ition (n = 1 in relation (88))

=2

-3.

-4,

Figure 18: Same as in Fig. (
superimposed short gravity v

Besides the simulatic
experiments with differen
and dissipation paramet:
external forcing (not disc
tra observed in all runs h:
follows. Most of the ener
called “main branches” a:
bound (n = 2,3, ...) wave

and, for not too large k,
pure capillary waves).




" “he curve is what appears % T T : ' f ‘ T ‘ * —’
ding to bound waves and

(88)

g avity term omitted and
ves above the curve which
gerved in the pure gravity
i&7 suggest the hypothesis
o, through nonlinear inter-
el to propagate with the
: simulations ave needed to

Ioglgsk{l-:')

1
1
&
~

Figure 18: Same as in Fig. 6 but for Exp. 10 (initial conditions: Stokes wave with
superimposed short gravity waves).

Desides the simulations described above, we ran a number of other
experiments with different initial conditions, resolution in the horizontal,
and dissipation parameters; some of the runs included various types of

xternal forcing (not discussed here). The wavenumber—{requency spec-
tra observed in all runs had similar features which may be summarized as
follows. Most of the energy is concentrated along the curves which were
called “main branches” and which consist of free (n = 1) and generalized
B bound (n = 2,3,...) waves. The general formula for this set of curves is

loglosk(k)

i D(E E) = (89)

and, for not too large k, is approximated by relation (87) (or (88) for
y waves), with Curve 1 being pure capillary waves).
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except that ¢ can be approximated by the linear phase velocity (59). With
T | increasing k, there is a tendency for the branches to straighten. Along
with the “main branches” (89), there are other patterns in the spectra;
the corresponding modes bear relatively low energy. These structures
- need further investigation.

7 The last model run to be described (Exp. 10) again deals with pure
gravity waves and illustrates interaction of a large long wave with small
short waves. A set of white-noige-like waves with the amplitude of 0.001
in the range 15 < k < 40 was superimposed on a 2m-periodic Stokes
wave with the amplitude A = 0.3 . The iniegration was performed up to
T = 1000 with A7 = 0.01.
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waves belong to additional regular patterns which are completely differ-
ent from those observed in Exp. 6 (Fig. 11) where “pure” white noise
was used as the initial conditions, The difference suggests that the be-
havior of the superimposed waves ig strongly controlled by interactions

phase of the Stokes wave (Fig. 21) is far from uniform or chaotic, and
shows clear maxima at the points of maximum slope of the Stokes wave,

7. Conclusions

The behavior of nonlinesr waves is difficult to investigate analytically.
Even for the stationary equations, exact solutions are known only in the
isolated case of pure capillary (Crapper’s) waves. In the case of station.
ary pure gravity (Stokes) waves, construction of analytical expansions
for consecutive Fourier coeflicients provides only an approximation for
truncated Fourier series and is thus, actually, a numerical procedure in
which the amount of calculations increases sharply with increasing trun-
cation number. As for general nonstationary wave fields, their analytical
investigation is clearly impossible without drastic simplifications which
may lead to unpredictable consequences. In the development of numer-
ical algorithms for 1-D potential waves, considerable progress has been
made during the last 15 years, but the applicability of thege techniques
for simulation of multi-mode wave fields over a long time period has not
been proven. One possible approach to circumvent these problems is to
develop a highly accurate numerical scheme for the principal equations of

The main difficulty in constructing numerical methods for nonsta-
tionary potential waves is how to deal with the vertical dimension. For
a numerical scheme to be really efficient, the vertical dimension must
be eliminated from the model prognostic equations. The nonstationary
surface-following conformal mapping used in our scheme is, indeed, a
most effective way to resolve this problem and make the model capable
of long-term multi-mode simulations.

The results obtained in this work may be divided into three groups.
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# While properties of stationary solutions imply many intriguing prob-
lems, we used these results mainly as a tool to validate the nonstationary
model. The validation was performed by using solutions obtained in Sec-
tion 3 as initial conditions for the nonstationary problem. Since the coor-
dinate system of the latter was bound to the mesn flow rather than to the
wave profile, the model simulates running Stokes and gravity-capillary
waves. It should be emphasized that the validation was far from trivial,
as the nonstationary model is based on equations much more complicated
than the stationary ones and on s numerical procedure of its own, which
“does not know” that the simulsted waves are supposed to retain their
shape. Nevertheless, they did retain it surprisingly well even for large
amplitudes. This suggests that (1) Siokes and gravity-capillary waves
are stable with respect to truncation errors of the nonstationary model,
and (2) these errors are small,

3. We used the nonstationary model for case studies of evolution of non-
linear wave fields. The cases described in Section 6 were chosen somewhat
arbitrarily, as our aim was to provide a possibly broader variety of ap-
plications of the technique developed. The effecis of bound waves were
most clearly seen in the simulation designed to approximate the laho-
ratory experiment by Yuen and Lake (1982). A most surpising feature
of multi-mode wave fields was a clear separation of the wavenumber—
frequency spectra into regular curvilinear branches, with most of the
energy concentrated along what we called “main branches”. This set of
branches satisfies a dispersion relation whose form is given by (89) where
the number n of the branch is 1 for the branch consisting of free waves
and is greater than 1 for branches consisting of generalized bound waves.
In this structure, nonlinear effects were manifested both in the existence
of multiple branches and in deviation of the “parent” curve (n = 1) from
the linear dispersion relation for relatively large wavenumbers. Tn most
cases the deviation clearly appeared to be such that the curve approaches
a straight line and so the group velocity tends to a constant; however,
this effect needs further analysis. The nonlinesr interactions also pro-
duced other regular branches. The energy of the modes belonging to
these additional branches was usually very small, sometimes with the
remarkable exception of a peculiar pattern (or group of patterns) which,
at least for not too small wavenumbers, could be roughly approximated
by a straight line passing through the origin. The nonlinear behavior
was perhaps most strongly manifested in the case of a long Stokes wave
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