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Abstract An estimation technique has been developed to
extrapolate tidal amplitudes and phases over entire ocean basins
using existing gauge data and the altimetric measurements which
are now beginning to be provided by satellite oceanography. The
technique was tested previously in the Lake Superior basin by
Sanchez et al. (1985). The method has now been developed and
applied in the Atlantic-Indian ocean basins using a 6” x 6" grid
to test its essential features.

The functions used in the interpolation are the eigenfunctions
of the velocity potential (Proudman functions), which are com-
puted numerically from a knowledge of the basin’s bottom to-
pography, the horizontal plan form, and the necessary boundary
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conditions. These functions are characteristic of the particular
basin.

The gravitational normal modes of the basin, computed as part
of the investigation, are used to obtain the theoretical forced
solutions for the tidal constituents. The latter provide the simu-
lated data for testing of the method and serve as a guide in
choosing the most energetic functions for the interpolation. The
results of the estimation of the M, and K, tidal constituents
indicate the possibility of recovering the tidal signal with a degree
of accuracy well within the error bounds of present satellite
techniques.

Introduction

The accurate modeling of oceanic tides is very important for the
interpretation of oceanic measurements from spaceborne altimeters.
The tides not only introduce errors into the determination of geo-
strophic velocity but are of considerable interest in their own right.
Tidal investigations of ocean basins with realistic topography and
coastal boundaries are still in the development stage.

Ocean tidal studies have a long history. Several comprehensive
reviews can be found in the literature (i.e., Hendershott and Munk,
1970; Cartwright, 1977; Hendershott, 1973, 1977, 1981; Schwiderski,
1980). Hendershott (1977) summarized the efforts to solve the
Laplace tidal equations (LTEs) for global tides for semidiurnal and
diurnal components up to that time.

More recent efforts have been directed to incorporate the results
of loading and self-attraction. Accad and Pekeris (1978) solve the
LTEs for the M, and S, tides in the world oceans on the basis
of a knowledge of the tidal potential alone. Tidal dissipation was
taken to be limited to the coastline. The main purpose of their
investigation was to determine the effects of tidal self-attraction
and of tidal loading. An iterative method was developed to eval-
uate these secondary effects. The resulting change is of the order
of 10% and better agreement is obtained between the theoretical
and observed tides. Parke and Hendershott (1980) obtained global
solutions to the LTEs for the M,, S,, and K tides. They addressed
the problem of divergence of the near-resonance modes by means
of test functions which are used to interpolate between island data
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in the least-squares sense. These test functions are derived by solving
the LTEs with ocean loading and self-gravitation in an iterative
manner. The resulting representations of the global tide are stable
over at least a +5% variation in the mean depth of the model
basin and they conserve mass.

Schwiderski (1980) computed the M, global tide by solving the
LTEs directly, using a finite difference scheme in space and time;
the strictly mathematical solution was modified by means of an
interpolation technique which incorporates over 2000 tide data
collected at continental and island stations. The interpolation is
accomplished by adjusting the bottom friction coefficient and by
allowing inflow or outflow across the mathematical ocean bound-
ary. No direct comparison of observed and computed data is feasible
since the model incorporates essentially all known data, although
it is possible to evaluate the smoothness with which the computed
tide accepts or rejects data. It was found that the interpolation
technique permits a check of the reality of both the tide model
and the tidal data input.

Platzman (1978, 1981, 1984) has computed a range of normal
modes for the world oceans. He used them to synthesize some of
the diurnal and semidiurnal tides. He decomposed the transport
vector by means of the Stokes/Helmholtz potentials but did not
determine the velocity potential and stream function eigenfunctions
explicitly (as in this paper), but proceeded directly to the normal-
mode solution of the LTEs. The linearized primitive equations were
discretized by means of first-order, piecewise-linear finite elements
with an average grid triangle area equal to that of a 4.54° equatorial
square. His synthesized tides incorporated dissipation by means of
energy flux across the domain boundary, and no tidal loading or
self-attraction was included.

Simulation studies by Estes (1980) using numerical solutions of
the LTEs to generate the observed measurements (based on simu-
lated 4-day SEASAT orbits over a 200-day interval) indicate that
when the rms amplitude error is less than 10 cm for the M, tide,
virtually all the structure is recovered. For rms errors between 12
and 15 cm, all large-scale features are retained; for 15- to 20-cm
rms errors, the high-amplitude structure is recovered. These results
were obtained by utilizing long arc intersection or crossover point
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data and simultaneously solving for the orbit error parameters with
the tide model parameters.

Mazzega (1985) created a global model of the M, tide using
24 days of SEASAT altimetry data. The solution was obtained by
means of surface spherical harmonics, and the results were qualita-
tively realistic. No hydrodynamic equations were used.

Woodworth and Cartwright (1986) have extracted the M , ocean
tide from SEASAT altimetry data. They used three complementary
methods. The first method provides point measurements of the tide
at the crossovers of the SEASAT repeat orbit ground track; it was
applied in the tropical ocean areas. The other two methods involve
the spatial expansion of M, in terms of surface spherical harmonics
or Platzman normal modes of the world ocean. The results repro-
duce many features of the tide represented in recent tidal models.

The purpose of this investigation is to develop an estimation
technique which will serve to extrapolate tidal amplitudes and
phases over entire ocean basins using existing gauge data and the
precise altimetric measurements which are now beginning to be
provided by satellite oceanography. The applicability of the extrap-
olating technique was tested in the Lake Superior basin by Sanchez
et al. (1985). Proceeding in stages we now report the results ob-
tained in the Atlantic and Indian Oceans using a 6° x 6° grid. At
this level of resolution it is possible to test the essential features of
the method without using real data.

The method to be used in this investigation requires several dis-
tinct steps. First it is necessary to determine numerically the stream
function and velocity potential orthogonal functions (the Stokes/
Helmholtz potentials) which span the space of the basin under con-
sideration. These space functions are then used in the LTEs to de-
termine the homogeneous solution (normal modes) and the forced
solution. The latter is obtained by adding the astronomical forcing
function modified to include solid-earth tides.

The velocity potential eigenfunctions obtained as a first step are
also used to extrapolate the surface height field over the entire
space domain of the given basin, and this approach will constitute
a distinct and integral part of the investigation. The theoretical
foundation is Proudman’s theory (1918) as formulated by Rao
(1966). The theory provides the formalism for calculation of the
gravitational (first-class) normal modes and the rotational (second-
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class or Rossby waves) normal models of irregularly shaped basins
with realistic bathymetry.

The method requires the solution of two elliptic partial differen-
tial equations with second-order operators which are simpler than
the tidal operator. The boundary conditions correspond to van-
ishing of the stream function and normal derivative of the-velocq:y
potential. The elliptic operators are represented numerically in
finite difference form; the grid used is a Richardson lattice which
preserves self-adjointness. The solutions yield the velolcity .and
surface height fields in terms of orthogonal functions with time-
dependent coefficients. These functions are then substituted into
the LTEs: If the homogeneous equations are used, one obtains the
normal modes; if the forcing terms are included, the forced solution
is obtained. In both cases the solution is obtained numerically. The
surface height field is dependent only on the velocity poter}tial
orthogonal functions. The expansion coefficients of these functions
can be estimated in a least-squares sense from available selected

tidal measurements.

Basic Equations
Free Solutions

The method of approach was originally developed by Proudman
(1918) using a Lagrangian approach. It was reformulated by Rao
(1966) from the Eulerian point of view. The basic ideas of the .method
presented below follow Rao’s line of development. The basic equa-
tions are the linearized shallow water equations on a rotating plane:

M _ M) = — kv

at 1
. m
T, v.M=0

o
where
M= HV = (M, N)
V ={u,v)
f=2wsinb
h(x,y) = H(x, y)/H
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H(x, y) is the variable depth of the fluid in equilibrium, H some
constant scaling depth, f the Coriolis parameter, V the horizontal
velocity vector, 1 the fluctuation of the free surface, g the apparent
gravitational acceleration, and V the horizontal gradient operator.
Brackets denote rotation of the vector through a right angle in the
clockwise direction of the horizontal plane (ie., [ ]= —(k x V),
k being a unit vector vertical to the horizontal plane).
The appropriate boundary conditions to be adjoined to equa-
tion (1) are -
M-n=0 2

on the coast, where n is the unit normal to the coastline. The trans-
port vector M may be partitioned as follows:

M = M?® + M¥ (3)
where

M* = —hVd

MY = —[V}] ¥

MY is the solenoidal part of M and h~ "M? is the irrotational part
since
V.[h'M*]=0
V-M¥=0

To complete the determination of ¢ and W, it is necessary to
specify the boundary conditions M®-n =0 and MY -n =0 to en-
sure that equation (2) is satisfied. In terms of ¢ and \, then, the
conditions are

a¢
h—=0
and an )
=0

on the boundaries.
The divergence of the transport field and the vorticity of the

velocity field yield
V-M=-V-hVd X
V.[h"IM] =V-h"iVYy (6)
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If M is known as a function of the horizontal coordinates, the left
sides of equations (6) are specified. Then each equation represents
an inhomogeneous elliptic differential equation with homogeneous
boundary conditions given by equations (5), and it is well known
that such problems possess a unique solution. It is also straightfor-
ward to prove that the representation of M as given in equations (3)
through (5) is unique. Since M itself is unknown, the procedure then
consists of expanding ¢ and V in terms of the spectra of the elliptic
operators appearing in equations (6); that is, we seek solutions that
satisfy the equations

V. hvo, = —A0,
VTV, = —pl,

where ¢., and \, are the characteristic functions and A, and p, are
the characteristic values associated with the corresponding oper-
ators V« hV and V - h~'V. The characteristic functions satisfy the
boundary conditions

(7)

o9, _
Y, =0

The condition A~ "\, = 0 imposes a stronger condition than that
required by equations (5). However, the factor h~! is necessary to
make the {, problem self-adjoint. Since the problems (7) and (8)
are self-adjoint, the characteristic values A, and ., are real and the
characteristic functions ¢, and V, each constitute a complete and
internally orthogonal set. Without loss of generality, the orthog-
onality condition may be chosen as

[ring - Mpda =1, [0,05d4 = ACH?S g

_ 9
f hIMY - MY dA = f Vi dA = Ac? 25,

where ¢? = gH and A is the surface area of the basin; 9,4 is the
Kronecker delta. We have further defined, in accordance with equa-
tion (4),

M¢ = —hVé, and MY = —[V{,]

in the orthogonality condition (9).



316 B. V. Sanchez, D. B. Rao, and S. D. Steenrod

The components of the transport vector can now be represented
by the sums

M® =3 P M?

-
MY - oM 1o
¥

where P, and Q, are the expansion coefficients. The orthogonality
conditions ensure that equations (10) represent the least-squares
approximations to M® and MY if and when the sums span the
complete spectra of equations (7). The height field n is governed
by the divergent part of M, and the ¢, functions yield a sufficient
basis for its representation. A convenient representation for n may
be taken as

= Z Ry,
&
n, =c 10,2,
where R, are the expansion coeflicients for the n-field.
Substitution of equations (10) and (11) into equations (1) and use

of the orthogonality conditions (9) yield a set of prediction equa-
tions for the expansion coefficients:

(1)

dpP

EEY_ZAYBPI-"_ZBYI}QB_V‘YRY=O
B B
do
dr V_ZCYHPB_ZDYBQBZO (12)
[} [

dR
E'Y‘FVYPY:O

where the coupling coeflicients are given by

Avll = {M$= [Mﬂ’]} BYﬁ = {M$> [M{?]} (13)
Cvﬁ = {M$’ [Mg]} DvB = {M‘I’= [Mg’]}

The quantity inside the braces represents an inner product of two
vectors W and T and is denoted by

(W, T} = (1/c2AR?) [ fh™'W-Td4
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It can be seen from equations (12) and (13) and the definition of the
inner product that all the coupling coefficients vanish when the
Coriolis parameter /= 0 and hence

d’p,
di?

+ V2P, =0

v, = (¢*A,)"? is the nonrotating frequency of oscillation. In equa-
tions (12) and (13) the subscript y (or B) is used as a proxy for a
binary index and represents an ordering of the characteristic func-
tions ¢, W, in some as yet unspecified manner. For convenience
we replace the wavenumber index vy by scalar indices i = 1,2, 3
forj=1,2,3,...)and denote

i = Aoy M;=M,, V=V
PiEP'yi QiEQ'yi REERyi
Ay = Ayig; (14)
Bij = B,y
Cij = Cyij
Di; = Dy,

Using the notation above, we can define column vectors

P = col (P)), Q =col (Q)), R =col (R))
|P
S=|Q (15a)
R
and matrices
A= {Aij} B= {Bij}
C={Cy D = {D;} (15b)
{v) = diagonal v,

Equations (12) may now be written in the form

ds
S S=0 16
. ko)



318 B. V. Sanchez, D. B. Rao, and S. D. Steenrod

where a is the square matrix

=l =B ey
=|-C -D 0 (17)
vy 00

In seeking the solutions for the normal modes, we assume that
S ~ eiut

where o is the normal-mode frequency with rotation and i =/ —1.
Equation (15) then reduces to

(11 — ia)S = 0 (18)

In equation (18), IT is the identity matrix and the o’s are the char-
acteristic values of the matrix ia. From the definition of the coupling
coefficients given in equation (13) and the matrix a as defined in
equation (17), it is clear that ia exhibits Hermitian symmetry and
hence the o’s constitute a spectrum of real eigenvalues. In com-
puting the matrix elements in a, the basis functions ¢; and \; are
chosen to correspond to an ordering of the characteristic values
A, and y; arranged so that Ay <A, <Az --and py; < p, < pz- .
Such an ordering has been chosen since the A;’s and p;’s have the
dimensions of (wavenumber)®. Hence, at any order of truncation,
those ¢;'s and ;s with the largest space scales are taken into
account.

Forced Solution

In the computation of the forced solution we include the effects of
the yielding of the solid earth to tide-generating forces. The effects
due to self-attraction of the tide and tidal loading as well as the
frictional effects have not been included. The theory allows for the
inclusion of these effects, but they introduce computational com-
plications and physical uncertainties and they are not necessary in
the context of the application of the interpolation technique. Equa-
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tions (1) are recast for the forced tidal oscillations as

cM _
B — f[M] = —gHhVY’
(19)
an, +V-M=0
ot

where
n'=n—(1+k,—h)n
k, and h, are the Love numbers and 7 is the equilibrium tide height.

Let the vector G = gHh(l + k, — h,)VH. Equations (19) can then
be written

M _

P (20)
A Liv.M=0

ot

Substitution of the expansions (10) and (11) into equations (20)
yields, after using equation (13),

dp .
G X AnPs— ¥ ByQy = ViR, = (@A) [mG-Mmpad
99y _ ¥ ¢ Py~ Y D40, = (PAHY)! [ 6 -myaa
dr . B B 5 ¥B Il_(c * Ay
dR
dtT +v,P, =0
(21)
Define the vector F as follows:
(CPAHY) J'fh-IG ‘M dA |
F =| ((2AHY)"! f fh1G - M¥dA (22)

0
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Equations (21) can then be written as an inhomogeneous matrix
equation

ds
5 +eS=F (23)

where S and a are defined by equations (15a) and (17). The solution
of equation (23) is given by

S = C{e™y fﬂ (e™i"y CF(z) dt (24)

where C is the modal matrix containing the eigenvectors of a
arranged in columns and ¢ are the characteristics values of a. (&'}
is a diagonal matrix.

Estimation

The orthogonal functions ¢, form a basis for the expansion of the
height field 1, as discussed earlier. Since these functions are char-
acteristic for a particular basin and are described at all points inside
the basin (within the resolution of the finite difference grid), they
can be used as optimal functions for extrapolation of the tidal field
over the whole basin, given data at some selected points.

Even though the basis functions are orthogonal, in fitting the
data to these functions it is preferable to use linear least-squares
techniques to determine the coefficients of expansion rather than
the orthogonality property since real data are not usually avail-
able at regularly spaced points. A similar approach was taken in
a previous investigation by Rao and Schwab (1981) in which they
determined the steady circulation in a closed basin for which the
appropriate orthogonal functions are the ., functions, and Sanchez
et al. (1985) used the ¢, functions for tidal extrapolation in Lake
Superior. An outline of the procedure and the basic equations
involved are given below.

The tidal height field as given by equations (11) and (15) can be
written

n(x 3, 1) = ¥ Ry, fx, y) cos 8t — 3, Rypmfx, y)sin 8t (25)
k4 Y

Tidal Estimation in the Atlantic and Indian Oceans 327

where R,, and R,; denote the real and imaginary parts of R.. The
tidal height field can also be expressed in terms of amplitude A(x, y)
and phase O(x, y), that is,

n(xs ¥, t) - A(x= y) COS{OT - ®(xa y):l (26)

Comparing equations (25) and (26), one obtains the following

relations:
2 F i
A(x7 y} = |:(Z Ryrﬂ'{) + (Z R'ffnﬂg') ]
f ke (27)

SR R )

Also, from equations (25) and (26) one obtains the following vector-
matrix relations:

[1]R, = A cos 0 28)
[n]R;=Asin®

The components of the vectors A cos® and Asin 0 are the n
available tidal measurements. The matrix [n] is available from the
solution of the velocity potential eigenfunctions; its k columns will
correspond to the velocity potential eigenfunctions chosen to rep-
resent the forced solution, and its n rows correspond to the location
of the tidal measurements in the basin under consideration. The
least-squares solution to equations (28) is then given by

R, = ((m]"[n]) '[m]"A cos 6
R; = ([n]"[n]) " '[n]"A sin 6 (29)

where [n]" is the transposed matrix. Having determined a certain
number of coefficients R, and R, since the functions n.(x, y) are
known over the entire basin, one can obtain the amplitude and
phase of the tidal height at all points in the basin from equation (27).
The maximum number of coefficients R, and R; that can be deter-
mined will be the same as the number of observations available.
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Results

Normal Modes and Forced Solutions

A normal-mode solution for the Atlantic and Indian Oceans has
been obtained by means of a 6° x 6° finite difference grid. There
are 462 velocity potential and 370 stream function points dis-
tributed such as to form a single Richardson lattice. A finite differ-
ence solution of equations (7) subject to the boundary conditions
given by equations (8) yields the eigenvalues and eigenvectors for
both fields. The eigenfunctions of the ¢ solution represent the non-
rotating gravitational normal modes of the basin. The periods of
oscillation of the lowest modes are given in the first column of
Table 1. The stream function modes generate the vorticity com-
ponent of the flow field in the rotating case for the gravitational
and rotational species. They are more dominant for the quasi-
geostrophic rotational modes than for the gravitational modes. The
normal-mode solution was obtained by including the lowest 150
eigenfunctions from each field (¢ and V) into the dynamical equa-
tions. The solution of the eigenvalue problem posed by equation
(18) yields the normal modes. The normal modes fall into two dis-
tinct categories: the inertia-gravitational, modified by rotation, and
the rotational, modified by divergence. If the secular determinant
is truncated at a size n x n, one obtains 2n/3 gravitational modes
and n/3 rotational modes, in pairs (plus and minus the same value).
In our case there are 300 gravitational modes and 150 rotational
modes. The rotational modes are characterized by high ratios of
kinetic to potential energy; these modes will vanish in a basin of
constant depth and Coriolis parameter. The rotational normal

modes are extremely sensitive to the resolution of the shape of the

basin and the bottom topography, and the convergence of their

roots is more complicated than for gravitational modes. A detailed

discussion of the nature of the two types of modes is given by

Platzman (1975) and Rao and Schwab (1976). The gravitational

modes are by far the most important in the context of the diurnal

and semidiurnal tides, as shown by Platzman (1984).

Table 1 gives a list of the first 20 gravitational modes in order

of decreasing period. For each mode the following quantities are
given: the nonrotational periods according to our model, the four

Energy Ratio
(Kinetic/Potential)
1.47
0.96
0.81
0.84
0.86
1.19
1.03
1.11
0.86
1.03
1.07
1.27
1.09
1.14
1.14
1.15
1.21
1.16
1.19
1.00

|
42.8
29.1
230
20.4
18.1
16.6
14.3
13.7
132
12.3

Platzman (F.E)

Platzman (F.D.)

@
41.88
29.43
23.47
20.89
17.22
15.24
14.36
13.77
12.79
12.17
11.35
11.05
10.86
10.60
10.38

9.87
9.62
9.20

66.61
18.31

Rotational

Table 1
Gravitational Modes
Period (hr)

67.92
42.53
19.40
17.34
15.73
14.44
13.93
12.99
12.55
11.99
11.13
10.93
10.62
10.39

9.97

9.52

9.21

This Investigation
29.61
25.55
2093

Platzman (F.D.)
779
41.6
28.6
222

Nonrotational

9.99
9.26

77.68

40.98
29.00

2217
19.20
19.08
16.52
14.56
14.17
13.42
12.94
12.74
11.72
11.47
11.12
10.60
10.26

20.73

This Investigation
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noqrotational periods given by Platzman (1975), the rotational
periods obtained by our model, the rotational periods according
to Plhatzman (1975) using a 6° x 6° finite difference grid, and the
rotatlongl periods obtained by Platzman (1978) using a finite ele-
ment grid with average area equal to that of a 4.32° equatorial
square. The last entry is the ratio of energies (kinetic/potential)
obtained by our model. The nonrotational gravity modes are equiv-
alent to the eigenfunctions of the velocity potential or Proudman
functions.

. Table 2 lists the 20 most powerful modes for the M and K
tidal components in order of decreasing power. The entrzies in thé
table give the power ranking, the rotational period in hours, the

Table 2
Power Spectrum for the M, and K, Components
M, K,
Period  _ Power(%)  period Power (%)

Rank (hr) Each Sum {(hr) Each Sum
1 12.99 767 767 2355 1279 1279
2 10.62 733 1501 13.93 870 2149
3 13.93 731 232 1734 819 2068
4 11.99 600 2833 2093 801 37.70
5 14.44 534 3367 2961 352 4123
6 10.39 384 3751 15.73 347 4470
7 12.55 361 4113 19.40 337 4808
8 9.1 344 4458 1299 292 51.00
9 19.40 295 47.53 10.93 280 5382
10 17.34 274 5028 11.13 262 5645
11 9.52 268 5296 9.21 215 5860
12 8.92 262 5559 6792 204 60.65
13 11.13 252 5812 1444 162 6228
14 830 241 60.53 8.80 161 6390
15 9.97 162 6216 8.30 158 6549
16 8.01 155 6371 11.99 146 66.95
17 23.55 154 6525 9.97 136 6831
18 8.70 144 6670  12.55 134 69.66
19 8.09 143 6814 1039 134 7100
20 7.82 140 69.54 8.40 114 7215
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percentage of the total power for that mode, and the percentage of
the total power contributed by all the modes included up to that
point.

The three most powerful modes in the M, spectrum are the
modes with periods of 12.99 hr (7.677%), 10.62 hr (7.33%), and
13.93 hr (7.31%). For the K, spectrum the three most powerful
modes have periods of 23.55 hr (12.79%), 13.93 hr (8.70%), and
17.34 hr (8.19%). Figures 1 through 5 give the structure (amplitude
and phase) for these five modes. The amplitudes have been normal-
ized to a maximum value of 100, the amplitude contours are shown
by the solid lines, and the dashed lines correspond to the phases.

Figures 6 and 7 show the M, and K, tidal solutions. These solu-
tions were obtained by including the first 150 eigenfunctions from
the ¢ and \ solutions. The forced solution for n then contains 150
coefficients R.. The contours of equal amplitude and phase are
given by the solid and dashed lines, respectively. The arrows indicate
the sense of progression for high and low water.

The solution for the M, tide shows an amphidromic point south
of Greenland and a double amphidromic system in the central
North Atlantic. There is an amphidrome in the South Atlantic
and several amphidromes in the periphery of the Indian Ocean; the
central Indian Ocean shows the usual antiamphidromic high. The
K, tide shows a simpler structure with amphidromic points in
the central North and South Atlantic and two amphidromes in the
Indian Ocean. The M, solution has an amplitude rms of 51.6 cm;
the corresponding value for K, is 26 cm.

Figures 8 and 9 show the approximate location of the amphi-
dromes for the M, and K, tidal solutions as obtained by different
investigators. The results of our mode] are reasonable. Undoubtedly
much of the variations can be attributed to poor resolution due to
the coarseness of the 6° x 6° grid as well as the absence of frictional

effects, self-attraction, and tidal loading.

Estimation Evaluation

In the estimation of the tide we attempt to use the data wherever
they are available and fit co-range and co-tidal lines to describe



MY L] = popad ‘opowr jeutioN 7 AUNOIA

T4 §6°€T = potied ‘epows [euntoN HANODIA

ar-

327

326



" 66T = pouad ‘9pow [BWION ‘b HAMDIA

09t 0g1 ol orl 06 0L o6 0 a1 ot- 0c- ce- Q- 05-

Y £6°€1 = pouad ‘spowr [PUON ‘f FHNDIA

o9l oCl ol on 08 a1 o 0c ol 01- oe- o~ 0¢- 05~

329

328



(]

|
130

|
10

-i0

-70

330

10.62 hr.

FIGURE 5. Normal mode, period

|
® o 110 120 1D @ 1M 16

331

FIGURE 6. M, tidal solution.



°pn

NOILWOLLSIANT SIHL
(8461) SI¥INId ONV QWIIV

SN 2y tog sewouprydwe jo uoneso] g WU DIL

(086T) LLOWSHIONIH any Biwyd  : O
&

sl
BV (6/6T) TASHIAGIMHIS

o8l sl Gl 6l D2t DIt D01 08
T T

I T T T T

| M B & ®
T T T I T

uonnos [epn 'y L FANOLA

|l @l ooE o ok oo s
I T T I T T

®m 8 ®
T T T

333

332



=]

i |
120 1D 1@ W

|
w1

1
b 1]

1
- & = @

334

PARKE AND HENDERSHOTT (1980)

@

THIS INVESTIGATION

SCHWIDERSKI (1981)

ok

B

FIGURE 9. Location of amphidromes for the K, tide.
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the tide over the entire basin using the velocity potential eigen-
functions in a least-squares sense. Since the actual tidal distribu-
tion over the entire basin is unknown, it is not possible to answer
the question of how well this extrapolation procedure has worked.
We have chosen to use the theoretically simulated tidal field as the
“true solution” and compare the resulting tidal pattern obtained
from a selected set of data points. The theoretical simulation also
serves as a guide in choosing the most energetic functions to be
used in the interpolation. Ideally, in the least-squares procedure it
is preferable to use fewer functions than there are available data
points to ensure a smooth fit and employ an a priori knowledge of
the most dominant modes in making this selection.

To carry out testing of the estimation, two sets of data points
have been created. In one case every fourth point in the ¢ field was
defined as a data point, yielding the 116 data points shown in Fig-
ure 10. In the second case every sixth point was taken, to obtain
the 77 data points shown in Figure 11. The tidal amplitudes and
phases at these points were extracted from the theoretical simula-
tion of the M, tide using 150 modes.

A comparison of the interpolated amplitudes and phases with
the “true” values at all grid points is shown in Tables 3 and 4. The
tables list the percentage of total grid points (462) where the ana-
lyzed and true values of amplitude and phase agree with each other
within the limits indicated for the different cases corresponding to
the number of modes chosen in the analysis. Also given in the table
are the rms errors of the amplitude over the entire basin and only
at the data points.

Tables 5 and 6 show the results obtained for the estimation of
the K, tide. When using the data set with 116 points, the best fit
to the M, tide is obtained when estimating the coefficients corre-
sponding to the 58 most powerful modes; this case yields a 4.2-cm
rms over the entire 462-point field. For the K, tide the best fit
corresponds to the case when 35 coefficients are estimated, which
yields a total rms of 1.9 cm. For the data set containing 77 points,
the best fit to the M, tide is obtained when estimating the coefli-
cients corresponding to the 32 most powerful modes, which case
gives a total rms of 8.6 cm. For this data set the best fit to the K,

tide yields a 3.3-cm total rms by estimating 34 coefficients. The
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342 B. V. Sanchez, D, B. Rao, and S. D. Steenrod

number of coefficients that yields the best fit is a function of the
number of data points and their distribution in space in relation
to the structure of the particular tidal component. Therefore, given

a certain data set in the domain of an ocean basin, the theoretical

simulation will help to choose the optimum number of functions !
to use in the interpolation. Also, by using the results of the estima- |
tion of the theoretical solution it is possible to determine the areas |
where additional data measurements are most needed, as shown

in Figures 10 and 11. Figure 12 shows the absolute values of the
differences in amplitudes between the theoretical M, tide using 1 N
150 coefficients and the best fit using 58 coefficients and 116 data '
points. Figure 13 shows the corresponding values for the K, tide
when using a best fit of 35 coefficients. To facilitate display, the
numbers are rounded to the nearest digit. In the M, case there are
areas in the northeast Atlantic with higher than average rms. The i
highest discrepancies occur at some isolated points off the coast of \§j -

Labrador, Greenland, northern Australia, and east Antarctica. The Qﬁj
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K, fit shows some high values in the northeast Atlantic and the I

Patagonian shelf as well as in the Antarctic area in the Indian .

Ocean. ig /
We shall point out that we have not tested every possible com-

bination of modes when estimating the coefficients to fit the tide

in the different cases. An exhaustive search might yield still better

results for the Proudman functions.
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Modeling Errors in the Data !
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The altimetric measurements provided by satellites are not free of

errors and any method that uses the data will be affected by them. ‘
A detailed discussion of these errors in the context of tidal extrac- ‘
tion is given by Estes (1980) and Woodworth and Cartwright (1986), {
among others. To ascertain what the effects of these errors might \ T
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FIGURE 12. M, tide: amplitude differences (cm) between theoretical solution
using 150 coeflicients and 58 coefficient solution from 116-point data set.
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be in the context of our technique, we introduce some simple models k
for the error distribution. These models are not intended to re-
produce exactly the real errors found in real data, but hopefully \
they are representative of worst-case situations and will shed some |
light on what to expect in the real case. First we divide the Atlantic- . J

. - . . ) ()
Indian basin into three different regions, corresponding to the
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Atlantic, Indian, and East Indian Oceans, as shown in Figure 14.
Three error models will be tested:

1. The first model will be a 10-cm error in the amplitude of the
tide throughout the entire basin.

2. The second model introduces a 20-cm error in the tidal ampli-
tude throughout the entire Indian Ocean (including the East
Indian).

3. The third model consists of a 40-cm error in the tidal ampli-
tude of the East Indian basin only.

In each case the error is assumed to be a positive additive constant
with no random component.

First we test a data set consisting of the 462 points where our
theoretical solution is defined; the results are given in Table 7. The
behavior of the solution is linear and stable. There is, of course, a
propagation of error, and the quality of the results in the immediate
area of the data is only as good as the data itself. The inclusion of
more Proudman functions in the estimation does not produce better
results in all cases. Table 8 gives the results for the 116-point data
set; the behavior is similar but now there are two sources of error:
the data errors and the errors due to the estimation procedure.
They seem to behave in an additive manner. However, when no
data errors were present the solution with 58 functions gave better
results than the 29-function solution. As shown in Table 3, the rms
values for the entire basin were 4.2 cm and 5.4 cm, respectively. For
the three error models tested the 29-function solution gives better
results, which indicates that any pre-solution analysis should in-
clude some sort of error modeling, the more realistic the better.

Fitting Mazzega’s M, with Prondman Functions

Mazzega (1985) used the SEASAT data to obtain a spherical har-
monic expansion for the M, tide in the world oceans, this was the
first attempt to estimate the deep ocean tides from satellite altimeter
data, Woodworth and Cartwright (1986) discuss Mazzega’s method
to some extent. We have used Mazzega’s spherical harmonics co-
efficients to create values of amplitude and phase for the M, tide
at the 462 points of our grid. We have used his expansion to degree
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Table 7
Fitting M, with Proudman Functions, 462 Data Points,
Errors Included

s ] Rms (cm)

F 4B Entire East
ﬁ da Error Function Basin Atlantic Indian Indian

_ i 29 9.5 9.4 9.6 84

- v e B 10 cm 58 0.4 9.4 9.4 9.4

i t%% 52 18 entire 100 9.6 9.6 9.6 9.3

'\ —e basin 150 9.7 9.8 9.7 9.6
g 29 11.9 49 16.8 17.1

) 20 cm 58 12.2 33 17.6 18.8

1® Indian 100 12.7 27 18.5 18.8

e . %) Ocean 150 13.0 2.0 19.0 19.5

s 29 10.1 47 14.1 237

iy 40 cm 58 10.9 2.7 15.8 30.8

East 100 11.5 1.6 16.9 34.5

18 Indian 150 12.1 0.5 17.9 368

and order 6, which yields his best model. This is not intended to
represent a better alternative to a fit to the actual data, as Wood-
worth and Cartwright (1986) have done. We would like to pursue
such an approach in the future using Proudman functions com-
puted with a finer resolution than our present 6° x 6° grid allows.

FIGURE 14. Regions used in modeling data errors.

S | @
z -9
2 Table 8
= 1f Fitting M, with Proudman Functions, 116 Data Points,
-4 Errors Included
B Rms (cm)
-® Entire East
g Error Function Basin Atlantic Indian Indian
N g 10 cm 29 12.X 12.6 11.5 14.5
PR entire basin 58 135 15.4 11.3 15.4
20 cm 29 15.0 Biil 21.2 29.8
Indian Ocean 38 215 12.4 28.7 48.9
- 40 cm 29 12.6 6.7 17.1 30.7
ﬁ g East Indian 58 16.7 11.0 21.6 420
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Table 9
Fitting Mazzega’s M, (Spherical Harmonic
Expansion to Degree and Order 6) with
Proudman Functions

Rms (cm)
Function Entire Basin Atlantic Indian
29 12.0 12.0 12.0
58 92 10.8 6.9
68 7.9 9.0 6.3
80 51 4.9 53
100 4.4 4.5 4.3
150 4.1 4.2 4.0
200 3.9 4.0 3.9

However, Mazzega’s solution reproduces many of the features pre-
dicted by numerical models such as Schwiderski’s (1979); therefore,
a fit to his solution using Proudman functions should be of some
interest. The results are given in Table 9. We find that the fit gets
progressively better as we increase the number of functions, al-
though the rate of improvement slows down considerably after the
first 100. We did not try more than 200 functions, at which point
the fit was down at the 4-cm level. The rms in sea surface height
difference between our theoretical solution (150 modes) and
Mazzega’s was 27.36 cm before the fit.

Conclusions

A method has been developed to interpolate tidal data to map the
tidal components over an entire basin. The technique has been
demonstrated in an application to the Lake Superior basin by
Sanchez et al. (1985). Now it has been applied to the Atlantic-Indian
ocean basin using a 6° x 6° finite difference grid.

The computed normal modes agree fairly well with those obtained
by Platzman (1975) using a different approach. The forced solutions
for the M, and K, tidal constituents were computed also. These
theoretical simulations show the same general pattern obtained by
other modelers (i.e., Platzman, 1984; Schwiderski, 1983; Parke and
Hendershott, 1980; Accad and Pekeris, 1978). The theoretical so-
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lutions were obtained by including 150 eigenfunctions of the veloc-
ity potential. The resulting height and phase fields were used as
data to test the estimation technique and as a guide in choosing
the most energetic functions. The results of the interpolation show
that it is possible to recover the M, and K, components with a de-
gree of accuracy well within the error bounds of present satellite
techniques.

In the light of the recent investigation by Woodworth and Cart-
wright (1986) in which they used the normal modes obtained by
Platzman as basis functions for the interpolation, a few observations
might be pertinent. We believe the adoption of the Proudman
functions as a basis offers the advantage of simplicity since to
compute these functions it is only necessary to solve the first of
equations (7). It is possible to perform accuracy tests on a real data
set. A certain amount of knowledge as to the magnitude and geo-
graphic distribution of the errors in the data is probably important
in this last context. The Proudman functions also offer the advantage
of being free of the dynamic prejudice introduced by factors such
as friction. The choice between finite differences and finite elements
in the numerical computation of the solution deserves some atten-
tion. Finite differences are probably easier to implement in terms
of the initial effort required, while finite elements are probably
better suited to the modeling of irregular boundaries. In either case
the increasing power of the last-generation computers should allow
the adoption of finer grids with better resolution.

Future applications of the method should consider its extension
to the Pacific basin, the adoption of a grid with finer resolution,
the incorporation of real data from gauges and satellite measure-
ments, and the simulation and analysis of other tidal constituents.
The method is especially suited for the latter since the eigenfunctions
of the velocity potential (Proudman functions) of a particular basin
are dependent only on its shape and depth, and they have to be
computed only once.
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