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Two-Dimensional Co-Oscillations in a Rectangular
Bay: Possible Application to Water-Level Problems
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The rwo-dimensional response of a reciangular bay of uniform depth to a fluctuating
water-level disturbance imposed at its mouth s examined in the framework of linear
shallow-water equations on a nonrotating earth. The imposed forcing is periodic in
time but spacially varying in the transverse direction along the mouth of the bay. The
response is presented both in terms of the amplification factor, which is the ratio of
the imposed amplitude at the mouth to that ar the closed end of the bay, and the
structure of the height field within the bay. The mwo-dimensional character of the
response becomes more pronounced as the wavelength of the disturbance at the mouth
decreases and as the width of the bay increases. Positive and negative amphidromic
systems can be generated in the bay for disturbances propagaring along the mouth of
the bav even though the earth’s rotation is neglected. The origin of the water-level
fluctuations ar the mouth of the bay could be due to tides, storm surges, or tsunamis.
This study indicates the importance of measuring the spacial variations in the water-
level fluctuations along the mouth of the bay, instead of assuming them to be spacially
uniform, when attempling 1o explain the water-level response within the bay.

Keywords co-oscillations, rectangular bay, two-dimensional problem. no-rotation
case

All bays are subjected to forcing at their mouths due to water-level fluctuations imposed
by the external water bodies to which they are connected. These water-level fluctuations
in the external water bodies could be produced by any number of causes. such as astro-
nomical tides, storm surges, or tsunamis. This imposed forcing at the mouth produces a
co-oscillating response within the bay. These co-oscillations in a rectangular bay have
been previously examined in the context of one-dimensional shallow-water theory for
simple-analytical-shaped bottom topographies. For basins of variable shapes and bottom
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topographies, the problem has been examined in the context of the channel equations
using numerical procedures (see Defant, 1961). In these one-dimensional studies, the
water-level fluctuation at the mouth is periodic in time and uniform in space along the
mouth of the bay. The response of the bay is generally given in terms of the amplification
factor, which is the ratio of the imposed forcing elevation at the mouth to that at the
closed end of the bay. This amplification factor depends on the basin geometry, bottom
topography, and the frequency of the forcing at the mouth. For a rectangular bay of length
L and uniform depth H, for example, the amplification factor is given by l/cos(wL/C),
where C = VgH is the speed of long gravity waves and o is the frequency of forcing
imposed at the mouth. The amplification factor is generally = 1, since cos(wL/C) is
always = |, indicating that the amplitude at the head of the bay is larger than the forcing
amplitude imposed at the mouth. The amplification becomes infinite (resonant response)
in the inviscid case whenever wL/C becomes an odd multiple of /2, which represents
the value of the frequency of a free oscillation mode of the bay.

These simple considerations are made complicated in nature due to various factors.
One such factor is that all free modes of oscillation of the bay are assumed to be
characterized by the existence of a nodal line—a line of zero water-level amplitude—at
the mouth of the bay. Imposition of this condition makes the frequencies of free oscilla-
tions equal to odd multiples of #/2 in the one-dimensional case mentioned above. In
reality, the nodal lines for different free modes of a bay connected to a larger water body
occur at different locations within the domain of the entire system as shown, for example,
in the study of Rao et al. (1976) on Lake Michigan. Hence, some of the free modes of a
bay can have a nonzero water-level amplitude at what might normally be considered the
physical location of the mouth of the bay. This feature then changes the frequency of the
mode from what it would have been if a nodal line were imposed at the mouth. The
resulting effect is a change in the amplification of a forced oscillation (and conditions for
resonance within the bay). This problem has been addressed by Heaps (1975).

Another factor that changes the simple one-dimensional response is that the amplitude
of the forcing imposed at the mouth will not normally be uniform along the mouth of the
bay, even for a narrow bay, but will exhibit some spacial variation. Such a spacial
variation in the forcing will result in a two-dimensional response within the bay. As a
consequence, the magnification factors at the head of the bay will be not only different
from what one would obtain for a spatially uniform forcing at the mouth. but would also
change in the transverse direction. In the study of the oscillations of Green Bay by Heaps
etal. (1982), several discrepancies were encountered between the observed and computed
water levels. As speculated by them, some of these differences could indeed be related
to the fact that spacial variations in the forcing imposed by the Lake Michigan water level
at the mouth of the Green Bay have not been taken into account. In comments on a study
of Dorrestein (1983), Murty and EI-Sabh (1989) speculated that local topography and
friction may be responsible for producing anamolous clockwise (negative)-rotating am-
phidromic systems in the co-oscillating tides in some of the marginal seas in the northern
hemisphere and vice versa in the southern hemisphere. This is probably true for large
marginal seas and bays, whose dynamics are influenced significantly by the earth’s
rotation. As will be shown in this study, for smaller water bodies or those at very low
latitudes, for which the effects of the earth’s rotation are negligible. disturbances propa-
gating along the mouth can produce co-tidal oscillations that exhibit either positive or
negative amphidromic systems even though the earth’s rotation is ignored.

In order to illustrate the nature of the two-dimensional response of a bay to a periodic
but spacially varying water-level fluctuation imposed at the mouth, we consider here a
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simple case of a nonrotating rectangular bay of uniform depth. Modifications due to the
possible nonexistence of a nodal line at the mouth for some of the free modes, effects of
nonuniform bottom topography, and the earth’s rotation will be considered later.

Basic Equations and Selution

The two-dimensional linear shallow-water equations on a nonrotating earth are

du an v an

a!:_ga E);__gg (1)

an | (out | avH)

at | dx ay |

In these equations, « and v are the horizontal velocities in the x and y directions,  is time,
7 is the water-level fluctuation about the mean, H is the depth of the water in the
undistributed state, and g is the gravitational acceleration. We assume that the bay
occupies the domain 0 = x = L (length of the bay) in the longitudinal direction and 0 =
y = B (breadth of the bay) in the transverse direction. The bay is closed at x = L (head
of the bay) and along y = 0 and B. It is open to a large external water body along its
mouth at x = 0, where it is connected to a larger water body (see Figure 1). The
appropriate boundary conditions for the free oscillations are that

u = 0atx = L (head of the bay) (2a)
v=~0aty = 0and B (2b)
n = 0atx = 0 (mouth of the bay) (2¢)

'}I:BI = i

Outside | 2
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Figure 1. Geometry of the bay.
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Eliminating « and v in Eq. (1) results in a single equation for 7,

o a—zﬂ) (3)

62
2 i
axz  ay?

ar

In the above equation, all quantities are made nondimensional using the length of the bay
L for x and y coordinates, L/C for time, and a scale amplitude 7, for the height field. In
these nondimensional units, the domain of the bay is 0 = x = 1 in the longitudinal
direction and 0 < y = € (= B/L) in the transverse direction.

Assuming a periodic time dependence of the form cos(at), where o is the nondi-
mensional frequency of free oscillations, the solution for m that satisfies the boundary
conditions given in Eq. (2) is

n = sir{@m + 1) Eﬂ CDS(L?) cos(ot) (EY)

The free oscillation frequencies are given by

12
2m + 1)? n*
. 7{(_2_4) r i} .
4 €2
in which m and n are integers that can take on the values 0, 1, 2, 3, .. .. All the free

modes that correspond to n = ( are obviously the one-dimensional longitudinal oscilla-
tions, and the frequencies of all these modes are equal to odd multiples of /2. The mode
that corresponds tom = Oand 2 = O s the lowest Helmholtz mode.

Far the forced oscillations, the governing equation is still the same as in Eq. (3), but
the boundary condition at the mouth for the fluctuation of the water level is now given

by

ny) = f(y) cos wt + g(y) sin w! atx = @ (6)

instead of Eq. (2¢), which holds for free oscillation modes. In Eq. (6), @ is the frequency
of the forcing from the larger water body to which the bay is connected. The functions
f() and g(y) represent the distribution of the forcing amplitude along the mouth of the
bay. The solution to the forced problem is given by

nmy
nix, y, 1) = Z F, cos a,(x — 1) cos T cos wi
! (N

nwy .
+ Z G, cos a,w(x — 1) cos — sin &i
€

where the coefficient «, is given by
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The expansion coefficients in Eq. (7) are determined through the condition that

nITY
E F, cos a,w cos —= = f(y)

” €

at g

2 G, ¢ nay =0 @
. €OS @, w cos —= = g(y)

n €

Hence, the expansion coefficients are given by

F,cos a,w = %Lf(y) L dy
. (10)

) v nary
G, cos a,w P L g(y) cos Lt dv
%

where
Y. = 1 forn =0

V=2 forn == 0

The coefficient «, may be real or imaginary depending on the values of n, €, and w,

Results for Specific Forcing Functions

The formng imposed at the mouth of the bay depends on its orientation with respect to
the conqectmg water body and the dynamics of the coupled system. In the context of
nonrotating dynamics, this forcing can be of the nature of a standing wave at the mouth
of the bay pumping the water level in a periodic nature or it can bce of the nature of a
wave propgg.avti.ng tangentially at the entrance of the bay. In order to take care of both of
these possibilities, we shall consider forcing functions as defined below:

fly) = cos ky and gly) =0 (1la)
=20 and gly) = sin ky (11b)
Jv) = cos ky and gly) = sin ky (11c)

TFe forcing functions given .in Egs. (11a) and (11b) represent standing waves at the mouth
of the bay, whereas the forcing from Eq. (1 [¢) represents a disturbance propagating along

Q Y lth ap p 1 Y / I expansion coefficients in eacl
lhe mout the bay w 1ase speed given by ke, h
£ L S O

2 (12a)

F,cos a,w =
for the cosine forcing (11a), and

v.ke[l — (—)" cos ke
ke — p2gt

G, cos a,w = (1256)
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for the sine forcing (116). For the propagating disturbance, the solution 18

nx, y, ) = Glx, ¥) coslwt — B(x, y)]
: nmy i

Lk —1 § .-
Glx, y)= z F, cos a,w(x — 1) cos —:} + {z G, cos a,w(x ) co . -

n

2" G, cos a,w(x — 1) cos nmyle
1

OB ) =em >, F, cos a,w(x — 1) cos nmy/e

n of high water and G is its amplitude. The expansion

where 8 is the phase of propagatio ol por s

coefficients F, and G, in Eq. (13) are the same as those given in Egs.

espectively. .
s It is cliar from Egs. (12a) and (12b) that F, and G, — * as &, — an odd multiple

of 2. Hence the solutions for the height field 1 in Ijlqs‘ (7) and (13Lbefcon?sgu?rt;c:;zii3
at the head of the bay, x = 1. This condition is:. realeed whene've(; the r:;;—lu; a resonan‘t
w becomes equal to the natural frequency o given 1 Eq. (5) dfl'l .r;];d i
response in the conventional sense. In view of the »ex1stence of mi T s f6
transverse modes, whenever the integer n representing the transv'ers;_] e
mode differs from zero, more resonant frequencies are present in the

case than in the one-dimensional case. o appeats o be a singalar —

i 2 f ke =
uations (12a) and (12b), the case 0O .
Thislnhfg'ever is not the case. When ke = n, the solutions (12a) and (12b) become

F, cos o, = |

for cosine forcing and
G,cos a,w = 0

or sin ()l(}al Qrcing wave numoer of e Ic unction e dS to N h
orcm cli T zero, the
f us f T nD. AS the n k th g

response from Egs. (12a), (12h), and (13) tends to

Eqg = 1 forn =0
cos w

F.=0 foralln # 0

G, =0 for all n

which is the solution to the one-dimensional case. .
In one-dimensional co-oscillation cases, the rgspons ;
fication factor, defined as the ratio of the water-leve

e of a bay is typically given in
terms of an ampli

head of the bay to that at the mouth. Following thi
A for the two-dimensional case. given by

nx =

l
am= nix = 0, )

| amplitude at the
5. we will define an amplification fact

. ¥) (14)
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It should be noted that in the one-dimensional case, the larger the magnitude of the
amplification factor, the closer the bay is to a resonant condition. In the two-dimensienal
case, however, a similar interpretation of the amplification does not necessarily apply.
This is because the amplitude of the forcing at the mouth changes fromy = 0toy = e,
sometimes going through one or more zero values in this range of y, depending on the
form of the prescribed forcing function. The nature of the two-dimensional response
always shows a finite water-level response at the head of the bay except for a truly
resonant condition when w becomes equal to o, as mentioned earlier. Hence the ampli-
fication factor for the two-dimensional case may occasionally become infinite for certain
values of y because the forcing amplitude of the water level at the mouth is equal to zero
while the response at the head has a finite nonzero magnitude at this value of y.

Numerical Results

The solutions given in Eqs. (12a), (12b), and (13) for the height field and the amplification
factor (14) are functions of the forcing frequency w, wave number &, and the aspect ratio
€ of the bay. We show results for a square bay (¢ = 1) and a rectangular bay whose
width is half its length (e = 0.5 or aspect ratio of 2 X 1), To illustrate the nature of the
bay’s response in this simple, no-rotation case, we have chosen values of w and k each
equal to /4 and 37/4. The first combination may be considered as a long-wavelength,
long-period forcing analogous to an astronomical tidal forcing at the mouth. The latter
combination is a shorter-period and shorter-wavelength forcing. This forcing may be
considered to be analogous to one imposed by a free oscillation of a large water body on
a smaller connected bay. In most cases the period of the Helmholtz mode of a bay is
greater than the period of the lowest mode of the larger water body, as in the case, for
example, of the Lake Michigan—Green Bay system (see Rao et al., 1976; Heaps et al.,
1991).

Figure 2 shows the amplification factors as a function of the transverse direction (v)
for both square and rectangular bays obtained with the cosine, sine, and propagating wave
forcings. In this case, w and & are both then equal to /4. For the cosine forcing and the
propagating wave forcing, the amplification factors do not change significantly as a
function of y for the e = 0.5 case. There is a slightly larger change in the magnitude of
the amplification factor for the square basin, in view of its larger transverse dimension.
An example of the changes in the amplification factor for a cosine forcing is given in
Table 1. For any given value of y in the range 0 < y = e, the amplification factor is
greater for smaller values of €; that is, the amplification increases in elongated bays.

For the sinusoidal forcing there is a large change in the amplification factor as a
function of y, as shown in Figure 2. However, it should be noted that the amplitude of

Table 1
Amplification factor values for w and k each = /4 as a function of € and y

M= 0.00 0.25 0.50 0.75 1.00
e =105 1.378 1.406 1.483 — —
e = 1.0 1.282 1.307 1.381 1.516 1.734
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the forcing at the mouth is zero at y = 0 and increases toward ¥ = €. Since the response
at the head of the bay is nonzero at y = 0, the amplification factor tends to = at y = 0.
As will be shown shortly, the two-dimensional response tends to produce an almost
uniform change in the water-level response at the head of the bay for all y, even though
the forcing at the mouth undergoes a greater amplitude change as a function of y. Hence,
as mentioned earlier, in the two-dimensional response of a bay, a large amplification
factor is not necessarily indicative of a resonant response over the basin in the usual
sense, since the water-level amplitudes at the head of the bay remain finite.

Figures 3 and 4 show the height field structure for the three kinds of forcing for the
square and the 2 X | rectangular bays. The two-dimensional character of the response is
more pronounced for the sinusoidal forcing. For the cosine forcing, the two-dimensional
character of the response appears to be confined to the region near the mouth of the bay.
The response takes on the appearance of a one-dimensional nature toward the head of the
bay. There does not appear to be a significant variation in the water-level amplitudes in
the transverse direction. For the sine and cosine forcing, the oscillation at the mouth and
at the head of the bay are in phase, since the forcing frequency is less than the lowest
bay mode frequency. For the propagating disturbance, the amplitude variation of the
height field shows a uniform distribution in the transverse direction, much like a one-
dimensional response. However. the nature of the response in terms of time occurrence
of the high water at various locations within the bay for the propagating disturbance is
interesting. The high water propagates in a positive (counterclockwise) direction around
the basin, indicating the existence of an amphidromic point, which is located outside the
mouth of the bay in this case. Amphidromic systems, positive or negative, are normally
characteristic of oscillations only in basins on a rotating earth. The example shown here
appears to be the first case of an amphidromic system in a nonrotating basin. Since the
disturbance is propagating from y = 0 toward v = ¢, the maximum value (= 1) of the
imposed amplitude at the mouth occurs at different times for different values of y. The
high water at the head of the bay, however, appears to occur almost simultaneously for
all y. It takes a longer time in the case of the square bay for the establishment of this high
water at the head than for the rectangular bay.

Consider now the case of @ and & each = 3#/4, which represents a frequency of
forcing that is greater than the lowest Helmholtz mode of the bay. Table 2 gives ampli-
fication factors as a function of y for the cosine forcing. As before, these values are larger
for the rectangular bay than for the square bay at any given value of y within the domain
of the bay. The amplification factor changes significantly as a function of y when com-
pared to the previous case. The co-oscillation amplitude at the head of the bay is even
damped (amplification factor values of = 1) for some values of y in the case of the square
bay.

Table 2
Amplification factor values for w and & each = 3w/4 as a function of € and y

y= 0.00 0:25 0.50 0.75 1.00
e =05 —1.104 —1.340 62T —
e= 1.0 —0.233 —0.349 —1.126 3.011 0.953
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Figures 6 and 7 shows the structure of the response in the square and rectangular
bays in terms of the height field for the three forcing functions. The two-dimensional
nature of the response is now very clear in the square bay. In the rectangular bay, the
response to the cosine and sine forcing again appears to assume the nature of a one-
dimensional response as one proceeds toward the head of the bay. This occurs even
though the amplification factor changes significantly because the amplitude of the applied
forcing at the mouth ranges from 1 at y = 0to 0.383 at y = € = 0.5 for the cosine
forcing and from O aty = 0t0 0.924 at y = € = 0.5 for the sine forcing. In the case of
the rectangular bay (e = 0.5) for k = 37/4, cos ky and sin ky do not pass through zero.
Hence, forcing at the mouth has a positive amplitude over the range 0 = y = . Since
the forcing frequency w = 37/4 is > /2, the lowest Helmholtz-mode frequency of the
bay, the response at the head of the bay is out of phase with the forcing at the mouth.
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Figure 6. Same as Figure 3 but for w and & = 3w/4.
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verse direction, but now it also shows that the propagation of the high water has a
clockwise (negative) amphidromic character for this combination of w and k in both the
square and rectangular bays. The amphidromic point is now located within the domain
of the bay. To illustrate further the complicated nature of the two-dimensional response
of a bay as a function of the frequency and wavelength of the imposed forcing and the
aspect ratio of the bay, we show in Figure 8 the response of a bay for a propagating
disturbance with @ = k = 5#/4. The square-bay response shows a positive amphidromic
system inside the bay, while the rectangular-bay response shows a negative amphidromic
system. Hence the sense of rotation of high water is strongly influenced by the aspect
ratio of the bay and the frequency and wavelength of the forcing function.

Conclusions

The two-dimensional response of a nonrotating rectangular bay of uniform depth to
periodic but spacially varying disturbances imposed at its mouth has been considered.
For very long wavelength of the imposed disturbance. the response tends to be almost
like that of the one-dimensional case, particularly near the head of the bay. As the
wavelength of the disturbance at the mouth decreases, the response becomes more com-
plicated, with significant two-dimensional variations in the amplitudes along the boundary
of the bay in both the longitudinal and transverse directions, especially near the mouth of
the bay. In particular, when a travéling disturbance is imposed at the mouth, the propa-
gation of high water within the bay can assume an amphidromic nature, even though the
earth’s rotation has been ignored.

This amphidromic character of the response in the bay could be either positive or
negative depending on the aspect ratio of the bay and the frequency and wave number of
the imposed forcing. In real nature, the dynamics of motions in a bay are influenced both
by the wind fields acting on the bay as well as by the water level forcing imposed at its
mouth by the larger water body. From this simple example presented here, it appears that
it may be necessary to take into account the variations of water level across the mouth of
the bay imposed by the external water body (in addition to the wind) to explain the
observed dynamics. The development of anomalous negative co-oscillating amphidromic
systems in some marginal seas in the northern hemisphere and positive ones in the
southern hemisphere, as discussed by Murty and El-Sabh (1989), may also be related to
the propagating nature of the forcing at the mouths of these bays and marginal seas in
addition to the influence of friction and topography.
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