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Abstract

The estimation of extreme significant wave heights H; using altimeter observations is investigated. Data from the following three satellite
missions are used: Geosat, ERS-1 and Topex/Poseidon. Practical methods of estimating extreme Hj are described and limitations of their
application to altimeter data are highlighted. Extreme H; are estimated using the three-parameter Weibull distribution, with maxima selected
via the peaks over threshold method, and the Fisher-Tippet type 1 distribution, using data selected via the initial distribution method.
Altimeter estimates are compared to extreme H; calculated from deep water buoy data. A comparative analysis of global estimates of
satellite-derived extreme H based on standard statistics investigates time-space undersampling and how it affects the reliability of long-term

extreme wave estimates made using satellite altimeter data.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Extreme values of significant wave height H, with long
term return periods are fundamental parameters in several
ocean engineering and oceanographic applications. These
include coastal management, naval architecture, navigation
and several issues related to coastal and offshore structures.
As a consequence of the large concentration of human
settlements along the coastline and of economic activities
there and across the oceans, extreme events generated
within the oceanic environment are among the most
hazardous. Consequently, the development of tools to assist
in their prediction is an important scientific challenge with a
wide range of applications.

The determination of extreme H, in the oceanic
environment usually involves the statistical analysis of
historical time series of wave heights derived from surface
buoy measurements. The usual practice consists of a
number of steps starting with the choice of a statistical

model fitting observations of storm H or other parameters

representative of H; maxima. The statistical model best
fitting the data is then extrapolated beyond the period
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covered by the observations at a chosen probability level,
which is associated with the occurrence of an extreme event
with a return period of N years (typically, N = 50 or 100).

Except for areas in the northern Atlantic and Pacific
oceans, buoy networks generally do not provide adequate
resolution or historical coverage of wave data for the
purpose of estimating extreme H;. Either time series are not
long enough or the number of existing buoys is too small or
both. Engineering applications usually require knowledge
of extreme H; with 50 and 100 year return periods. The
reliability of these estimates is thus significantly reduced
due to the short time length of the available buoy
measurements.

The relatively short period covered by buoy measure-
ments also allows large freedom in selecting the distri-
bution functions that fit the observed data properly, often
resulting in several estimated values at a single location that
differ significantly. If the short length of the data series
obstructs the efforts of estimating extremes in some
locations, in others it is not possible at all to make
estimates due to the poor spatial coverage and the
unavailability of in situ measurements on a global basis.
These limitations affect mostly the determination of
extreme Hg in oceanic areas adjacent to developing
countries in the Southern Hemisphere.
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Recent advances in atmospheric and wind-wave model-
ing technology have made it possible to build long-term
databases of hindcast wind speeds and wave heights with
global coverage [18,23]. The alternative of using these long-
term hindcast sea states to calculate global extreme H is
very attractive, as demonstrated recently by Wang and
Swail [31,32]. However, atmospheric and wind-wave
models still lack the skill to make accurate predictions or
reconstitutions of extreme events, as shown by Cardone et al.
and Swail and Cox [2,24].

An attractive alternative to obtaining global estimates of
extreme H, is to use satellite measurements of the sea
surface. Since the Seasat experiment in 1978, satellite
missions have proved the feasibility of using satellite-borne
radar altimeters to obtain reliable wind and wave climatol-
ogy with global coverage. Although the time span of
remotely sensed measurements is still not long enough to
overcome problems related to statistical confidence and
consistency of statistical extrapolations needed for estimat-
ing extreme values, the lack of spatial coverage associated
with buoy data is not a major problem when using satellite
data. As a consequence, recent studies using altimeter data
have developed a preliminary framework for determining
extreme H; on a global basis [3,9,21].

In this study we investigate the adequacy of obtaining
global estimates of extreme H; made with satellite altimeter
data, using two methods commonly used to estimate buoy-
derived extreme sea states. We calculate long-term extreme
H, using a global satellite altimeter database, consisting of
measurements made during the missions of Geosat, ERS-1
and TOPEX/Poseidon, covering a 10-year period. We
highlight some difficulties that arise from the sampling
characteristics of altimeter data and investigate simple
alternatives to reduce this limitation. In this way, we provide
a potentially useful approach to obtain information for
engineering and oceanographic applications in locations
where buoy data are presently unavailable.

This manuscript is structured as follows. In Section 2 we
provide a brief description of the combined altimeter
database. Commonly used methods for estimating extreme
values of environmental variables are outlined in Section 3.
Our validation strategy based on comparisons between
extreme H, calculated with satellite data and ocean surface
buoy measurements is summarized in Section 4. Results are
presented in Section 5, which is followed by a discussion of
how these results relate to previous studies in Section 6.
Finally, our main conclusions are summarized in Section 7.

2. Combined altimeter database

The combined satellite altimeter database used in our
study covers a 10-year period (1986—1995), including
Geosat’s Exact Repeat Mission (November 1986 to January
1990) and parts of the ERS-1 (August 1991 to August 1995)
and the TOPEX/Poseidon (September 1992 to October 1995)

missions, totaling 78 months (6.5 years) of effective
observations. Young and Holland [29,30] provide details
of the methodology used to inter-calibrate, quality-control
and merge these data into a single database composed
initially of mesh elements covering 2° X 2° in latitude and
longitude.

The initial size of mesh elements at 2°X 2° was a
compromise between spatial resolution and statistical
reliability, based on investigations of the consequences of
using different mesh sizes to the consistency of associated
wave climate parameters. These investigations [9,26] have
indicated that the choice of 2° X 2° mesh elements is close to
optimal for wave climatology studies. This data structure
has been successfully used by several authors to investigate
wave climate using satellite altimeter data [1,3,4,30]. In our
study, we investigate the effects on estimates of extreme H,
and the statistical reliability for both 2° X 2° and larger
4° X 4° mesh elements.

The choice of a regular mesh resolution in all locations
over the globe, as made in the present study, seems to reflect
the current practice and is convenient for generating a global
climatology of extremes. However, the adequacy of such an
approach and the chosen mesh-element size may not be
appropriate for some local applications, particularly in areas
where the spatial variability of the wave climate is high due
to the proximity of land or other environmental factors. In
these cases, local measurements would provide a more
reliable source of data for estimating extremes. Studies for
determining the local correlation length scales of wave
fields, such as that reported in Ref. [16], may lead in the
future to a more appropriate selection of location-dependent
mesh-element sizes for estimating global extremes con-
sidering local wave climatology.

3. Methods for estimating extreme H,

The N-year extreme value of an environmental variable
is a threshold quantity that is exceded on average every N
years. In coastal and ocean engineering applications N is
usually equal to 50 or 100 years. Our interest is, therefore,
on estimating extreme H; with an average recurrence of 50
or 100 years from a much shorter, 10-year-long database.
Thus, the estimates of extreme H, depend heavily on an
approach based on statistical analysis and extrapolation.

Within this framework, the usual procedure for estima-
ting extreme values through statistical extrapolation consists
of the following steps:

1. extract from the database of H, a series representing
observed maxima;

2. rank the series of maxima;

3. assign cumulative distribution functions (CDFs) to
individual maxima;

4. fit statistical distributions or models to the series of
maxima and their CDFs;
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5. apply tests to assess goodness of fit;
6. compute the extreme H, values with a prescribed return
period. |

Other than the availability of good quality data with a
suitable historic coverage, two other factors are critical to
obtaining reliable estimates of extreme H,. One is obviously
the choice of statistical distribution used to extrapolate the
data to the chosen probability level. The other important
factor is the selection of a sub-set of the original database
that is representative of the observed maxima.

The selection of a representative series of maxima is very
important because it allows the fitting of the chosen
statistical model to actual observed maxima. This will
generally bring more confidence that the extrapolation to a
chosen probability level will be a reliable estimate of
a longer-term extreme H;. On the other hand, fitting a
statistical model to all measurements of H, for example,
may lead to unreliable estimates of longer-term extremes,
since the probability distribution of H; maxima does not
necessarily follow a distribution that fits well all obser-
vations of H. Further discussion on this topic is found in
Refs. [17,20,25], for example.

In this context, the three most commonly used techniques
to produce sub-sets of data for investigating extreme waves
are the initial distribution method (IDM), the annual
maxima method (AM) and the peaks over threshold method
(POT). A brief description of their main characteristics is
provided below.

(a) IDM

In the IDM all available measurements, whether
associated or not with storm events, are binned into
ascending classes of wave heights. This means that IDM
data using one- to three-hourly measurements, common for
buoy data, are likely to include multiple values generated by
the same storm. Consequently, the estimates of extreme H,
will be made using a statistical model adjusted to a
distribution of H; that does not necessarily describe properly
the distribution of maxima. Although in principle this can
lead to biased and/or unreliable estimates of extreme H,
studies using both buoy and satellite observations from the
North Sea [6] have shown that the IDM can be used to
provide acceptable estimates of environmental extremes.

(b) AM

In the AM method only the highest H, observed in
any particular year is chosen, thus providing a series of
uncorrelated observations. A shortcoming of the appli-
cation of this method to estimating extreme wave heights
is that the period covered by measurements of H is
generally limited to a relatively small number of years,

which not surprisingly leads to series of annual maxima -

that are too short to yield reliable results. In addition,
when satellite data are considered, the existence of large
time lags between consecutive satellite passes over any
given location, results in undersampling of sea-state
maxima, leading to an underestimation of AM values

relative to buoy data. An example of the effects of this
limitation and a discussion of its consequences for
obtaining representative series of storm H, using POT
data are presented in Section 5.

(c) POT

The POT method has been nominated by a working
group on extreme waves associated with the International
Association for Hydraulic Research (IAHR) as the rec-
ommended choice for estimating extreme H, [15,19,28].
This method consists of extracting from a database
containing measurements of H, values that exceed a
given threshold. Such values should also be separated by
time lags large enough to guarantee the selection of
independent observations, i.e. maximum H; observed
during different storm events.

The choice of thresholds for censoring data in the POT
method can be somewhat subjective. For the purposes of
automation of the analysis, a common but rather arbitrary
approach is to adjust the threshold to increase or decrease
the number of extracted maxima until the best fit between
observations and a chosen statistical model is achieved. A
more objective method that is also consistent with the
physics of the generation of extremes consists of first
estimating the number of expected local maxima for a given
location. The threshold H, is then selected so that the
resulting number of observed maxima does not exceed the
number of storms per year at the site. This number may be
determined in many different ways (e.g. through the analysis
of weather charts or storm databases).

The IAHR recommended practice may be summarized
by the following steps:

1. select from a database a subset of H; maxima using the
POT method,;

2. separate the subset of H; maxima into new subsets with
data from different storm populations;

3. fit the three-parameter Weibull distribution to the POT
data from each subset; '

4. compute the desired extreme H; values associated
with each storm population.

Modifications of this methodology are required when
using a large global database composed of satellite
observations. The analysis of individual storm events
necessary to satisfy the POT criterion would be prohibitive
on this global scale. In our case, a practical approach is to
use a storm database [10] giving the average annual
numbers of storms at the center of each 2° X 2° (4° X 4°)
mesh element. If an automated procedure is to be used,
separating storms from different populations is also not
viable. Thus, at any given 2° X 2° mesh element all data are
taken as belonging to the same storm population, which may
limit the reliability of estimated extreme H; in areas exposed
to more than one type of storm (e.g. tropical and
extratropical storms).
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4. Validation strategy

An investigation of the compatibility between wave
measurements made by satellite altimeters and ocean-
surface buoys was made by Cooper and Forristall [9],
through the analysis of simulated storm winds and waves
generated with simple parametric models. They conclude
that satellite measurements made within a radius between
100 and 300 km centered at a given point generally provide
equivalent information to hourly buoy measurements made
at the central point. Thus, the results of Cooper and
Forristall [9] suggest that, in principle, single-point buoy
data and satellite measurements made within areas roughly
the size of 2° X 2° and up to 4° X 4° mesh elements should
all provide similar estimates of extreme H,. Consequently, it
would be reasonable to expect that a global database of
satellite altimeter measurements of H, such as the one used
in this study, would potentially address the objectives of
obtaining reliable global estimates of long-term extreme H,,
given a proper choice of statistical model is made for the
purposes of extrapolation.

To verify if these assumptions, based on the findings of
Cooper and Forristall [9], are valid to our combined satellite
database, we compare extreme H, calculated from altimeter
data and deep water in situ wave measurements made with
ocean surface buoys. A total of 11 buoys deployed in the
northern Pacific and Atlantic oceans are used. Data from 10
buoys were obtained from the National Data Buoy Center
(NDBC) of the US National Oceanic and Atmospheric
Administration (NOAA). Data from the eleventh buoy
location, Haltenbanken, near the coast of Norway, was
obtained from the IAHR working group on extreme waves.
The chosen buoys and their locations are shown in Fig. 1.
Identification codes, regional and geographical location,
measurement periods and total number of years covered by
the data for each buoy are given in Table 1.

Buoy measurements of Hg were prepared according to
the JAHR recommended practice. Since the measurement
period covered by data from the NDBC/NOAA buoys
much exceeded the period covered by the altimeter
database, two subsets from these buoys were created to

assess the sensitivity of estimated extremes to the length of
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the originating database of measured H,. The first subset
consisted of all available data from each buoy within the
corresponding measurement period indicated in Table 1.
The second subset included data truncated to the period
covered by the altimeter database (1986—1995). H; maxima
were selected from these two subsets using the POT method.
The number of POT points was chosen to closely match the
number of storms at each buoy location, which was
estimated from a storm database described in Ref. [10].
This approach was considered convenient for automation of
procedures having in mind the need of applying identical
techniques for the intended global analysis of extreme H..
To ensure independence of the data, consecutive H,
exceeding the chosen threshold wave height were required
to be separated by time lags greater or equal to 72 h.

Extreme H with a 100-year return period (henceforth
H(100) were estimated through an extrapolation of the
three-Parameter Weibull distribution at the appropriate
probability level, with parameters fitted to the data by
maximum likelihood. The three-Parameter Weibull distri-
bution (henceforth 3PW) is given by:

)]

where A is the independent variable (significant wave
height) and ay,, b, and k,, are the location, scale and shape
parameters, respectively. The distribution function F(h;),
which represents the probability of non-exceedence of 4, is
equal to zero whenever k; < a.

The differences between buoy-derived H 100 calculated
from the two subsets described above at each site were all
smaller than 10% (under 5% in all but one case). This was
an encouraging result, as it indicated that the shorter time
length of the altimeter database could, in principle, provide
consistent estimates of H;100. It also reassured us in using
the data available from the eleventh buoy, Haltenbanken,
despite its shorter coverage period relative to other buoy
sites. Finally, we assumed that the estimates of H,100 made
using the entire measurement period at each buoy were
representative of the true H 100. These values, which are
given in Table 2, were thus taken as the target for the
purposes of validation of satellite-based H,100.
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Fig. 1. Location of selected buoys: 41002, 42001, 42002, 44004, 46001, 46002, 46003, 46005, 46006, 51001 and Haltenbanken.
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Table 1

Identification codes, nominal and geographical location, measurement periods and total number of years covered by the data from ocean surface buoys used in
our study

Buoy Region Location (mean) Measurement period No of years
41002 SW North Atlantic 32.3°N, 75.3°W 1976-1998 22

42001 Gulf of Mexico 25.9°N, 89.7°W 1976-1998 22

42002 Gulf of Mexico 26.0°N, 93.5°W 1976-1997 21

44004 SW North Atlantic 38.6°N, 70.5°W 1977-1998 21

46001 Gulf of Alaska 56.2°N, 148.1°W 1976-1998 22

46002 NE North Pacific 42.5°N, 130.2°W 1976-1998 22

46003 Aleutian Islands 51.9°N, 155.8°W 1976-1998 22

46005 v NE North Pacific 46.1°N, 131.0°W 1976-1998 22

46006 NE North Pacific 40.8°N, 137.6°W 1977-1998 21

51001 Hawaiian Islands 23.4°N, 162.3°W 1981-1998 17

Hbken North Sea 65.1°N, 7.3°E 19801988 8

The IAHR procedure was then used to obtain estimates
of H 100 using altimeter data from 2° X 2° and 4° X 4° mesh
elements centered at each buoy site. We also examined a
simple alternative method to estimate H ;100 using the
altimeter database, which consisted of extrapolating a
Fisher-Tippet type 1 distribution fitted by maximum like-
lihood to data selected using the IDM. Following Carter [3],
IDM data points consisted of the calculated median value of
observations from each individual satellite pass within
2° X 2° (4° X 4°) mesh elements. This approach was also
tested to verify if weighting the IDM data to compensate for
undersampling affected the estimates of H 100, as discussed
in Section 5.

The Fisher-Tippet type 1 distribution (henceforth FT'1) is
given by:

F(h) = exp[ —exp(— %)] (2)
f

where a; and b; are the location and scale parameters,
respectively.

Following Goda and Mathisen et al. [13,19], values
of H 100 estimated from POT data were associated
with a probability level given by P(H; < H100) =
1 — Ny/(100NpgT), where Npgr is the number of selected
POT points and Ny is the number of years covered by the
POT series. In the case of IDM data, values of H,100 were

estimated by extrapolating the chosen distribution functions

to a probability level given by P(H, < H{100) =1 —
DIT;¢p, where D is a decorrelation time scale in hours for
observations of H, and T, is the number of hours in 100
years. Consistent with the decorrelation time scales for H,
used in other studies [9,25,27], we chose D = 3 h.
Confidence intervals for all estimates of H 100 were
calculated using empirical formulae proposed by Goda [13]

for the 3PW and the FT1 distributions. The goodness of fit of -

statistical distributions to series of H, maxima were
measured in terms of the Cramer Von Mises test (C), a
modified Kolmogorov—Smirnov test (T) proposed in Ref.
[8], for when distribution parameters are estimated from the
data, and a criterion based on the correlation coefficient (R)

proposed by Goda and Kobune [14]. Failures and passes
were determined considering a 95% confidence level.

5. Results

Results are presented in two subsections dedicated to (i)
the validation of H 100 relative to reference values
estimated from buoy data and (ii) the results of applying
two methodologies for computing global estimates of H,100
using the combined altimeter database. In Section 5.1 we
also examine some issues related to undersampling and to
seasonal observation bias in satellite observations of H,,
focusing on their consequences for estimates of H 100 and
alternatives for minimizing these effects.

5.1. Satellite- vs. buoy-derived H,100

Table 3 summarizes the estimates of H 100 made
using 2°X 2° altimeter data and three alternative

Table 2
Estimates of H,100 made using buoy data and the JAHR recommended
practice '

Buoy H100 (m) IAHR/buoy Np C/R/T
41002 . 12.83 215 244 P/P/P
42001 9.08 * 1.50 246 F/P/F
42002 8.70 * 1.30 237 F/P/P
44004 12.94 + 1.63 250 P/P/P
46001 15.74 + 1.81 476 P/P/P
46002 15.85 + 2.14 247 P/P/P
46003 17.89 + 2.53 357 P/P/P
46005 15.05 = 1.76 266 P/P/P
46006 15.86 + 2.05 229 P/P/P
51001 11.55 = 1.57 186 F/P/P
Hbken 14.95 + 1.56 118 P/P/P

Also indicated are the confidence intervals, the number of POT points
Np and scores for goodness of fit in terms of the following tests: Cramer
Von Mises test (C), Kolmogorov—Smirnov (T) and the REC criterion (R) of
Goda and Kobune [14]. Failures (F) and passes (P) are given at a 95%
confidence level.
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Table 3
Estimates of H;100 made using 2° X 2° altimeter data and the IAHR recommended practice (IAHR), the FT1 model with IDM data (FT1) and the weighted FT1
model (WFT1)

Site H,100 (m) IAHR/alt Np C/R/T A% H100 (m) FT1/alt N; C/R/IT (A%) H100 (m) WFT1/alt &, C/RT A%

41002 13.52 + 6.25 98 F/P/P 538 11.66 + 1.08 464 F/PIF  —9.12 13.67=1.08 464 F/P/F 6.53
42001 822 + 290 122 F/PIP —939 858 * 0.68 412 P/P/P —-542 887 %068 412 F/PIF  -222
42002  5.50 = 0.92 128 P/P/P —3683 7.78 = 0.61 435 P/P/P —1058 8.38 % 0.61 435 F/PIF  —3.62
44004 13.05 + 4.31 109 P/P/P 0.81 14.63 = 1.24 575 F/P/F 13.02 1325+ 1.24 575 F/F/F 2.33
46001 11.86 * 2.52 258 F/P/P —2464 1579 = 1.41 830 F/P/P 0.27 16.20 * 1.41 830 F/P/P 2.92
46002 10.25 * 1.76 106 P/P/P  —3530 15.12*1.15 671 F/PIF  —459 1507 % 1.15 671 F/PIF  —491
46003 13.38 = 2.20 188 F/P/P —2519 1824 * 1.45 842 P/P/P 195 17.74 + 1.45 842 F/P[F —0.82
46005 12.15 + 2.12 133 F/P/P —1923 1593 * 1.24 757 F/P/F 589 1592 +1.24 757 F/P/F 5.80
46006 12.79 * 2.47 99 P/P/P  —1938 16.55 % 1.33 561 F/P/P 435 17.17 £ 1.33 561 F/P/P 8.26
51001 833 +2.39 108 F/P/P —2789 9.82 * 0.69 582 P/P/P —14.96 10.05 = 0.69 582 P/P/P —12.98
Hbken 13.17 = 3.91 150 P/P/P  —1191 1734 =149 261 F/P/P 1599 17.20 = 1.49 261 F/P/P 15.01
|A%! - 19.63 7.83 7.39
A% —18.51 -0.29 1.48

Also indicated are the percentage bias of altimeter H, 100 relative to the buoy-derived estimates (4%), the mean bias A% and the mean absolute bias (14%l).

A definition of other indicated parameters is given in Table 2.

statistical extrapolation methods based on: the TAHR
recommended practice, the FT'1 model using IDM data
and a variation of this latter technique using a weighted
method of moments for estimation of distribution
parameters. These several altimeter-based estimates

of H,100 and their associated confidence intervals
are compared to buoy-IAHR H 100 in Fig. 2. Table 3
also indicates the percentage bias of the estimates of
altimeter H 100 relative to the buoy-IAHR H 100 given
in Table 2.
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Fig. 2. 2° X 2° Estimates of H;100 made with buoy data using the IAHR recommended practice are indicated in all panels by squares. Associated 95%
confidence intervals are indicated by the shaded regions. Triangles indicate estimates of H,100 made with altimeter data using (a) the IAHR recommended
practice, (b) the FT1 distribution with IDM data using the method of moments (MOM) and (c) the FT1 distribution with IDM data using a weighted method of
moments (WMOM). The 95% confidence limits for the altimeter results are shown by the vertical solid lines.
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A ccomparison: of H, 100 ‘estimated “using buoy: and
altimeter data and the TAHR récommended  practice is
presented in Fip: 2u). This figure shows that the altimeter-
TAHR H 100 generally underestimates ‘the buoy valuey,
with most aliimetersbased estimates falling below the 95%
confidence intervals of buoy estioates. This is. consistent
withthe large negative values for relative bius seen in Table
3. The differences between buoy and altimeter-TAHR H, 100
were generally farger al buoys locuted 1o the higher latitudes
of ‘both  the North Atantic and the North Pacific ocedans
{from around 2010~ 35%); although ‘the largest biag
(= 3B.83%) was associated with buoy 42002, in the Guif of
Mexico, The mean absolute blas was 19.63%.

We pote that despite these: large - discrepancies
between - buuy. and satellite estimates of L H 00, the
results for goodness of it given in Table 3" indicate that
the 3PW distibution fits ‘successfully the POT maxima
from ‘both-buoy and altimeter data in-the vast majority of

~locations. On the other hand, this may be.a result.of the
relatively small ‘namber of POT points used in parameter
fitting, which -allow broader tolerance Hmits at a given
statistical” confidence level relative 1o cases using IDM
data {see below),

Altimeter-based estimates of H 100 made using the F11
distribution and ‘1DM “data, on:the other hand, agreed
remarkably well with the buoy-TAHR H,100, This good
agreement is cleaily verified in Fig: 2(b), which also shows
that most altimeter-based estimates of H, 100 fell within the
95%: confidence intervals associated -with buoy-TAHR
H 100, Again, the larger discrepancies. of satellite. H,100
refative. to - buoy “estimates. were. observed. in ‘the higher
Iatitudes of both the North Atlantic and the North Pacific
Oceans (Trom around 10:4:15%) The mean absolute bias
was 7.83%.

Despite the 'good ‘match. between: the ‘sliimeter-FT1
H, 100 and - the' buoy-TAHR - estimates, goodness-offit
criteria indicated that ‘the FTT model does not provide a
good deseription of 1M data from the combined altimeter
database innearly half of the buoy locations, conuasting the
generally good fit of the 3PW model to POT data in most
validation sites. This, however, may be due 1o the faci that
the mach larger number of data points used in the TDM,
relative 1o POT data, Teads to relatively narrower tolevange

- Jimits at aogiven statistical confidenve: level . This, intum,
may explain the lasger numbet of failures associated with
the FT'1 model. Support for this idea is provided by Fig. 3,
which shows empivical and ‘model CDFs associated with
buoy 46006, in the NE North Pacific, This figure indicates
that both “statistical ‘models sesm 1o provide a- visually
acoeptable it to both POT and IDM data.

Inobjective tenms, it is only possible 10" say ‘that
goodness-of-it tests appiied to-our results and evidence
presented in: previous studies [15,19,28] seeny to- indicate
that'the FI'l model is not as appropriate as the 3PW model
{or-estimaling extrerne A On the other hand, the tesolts
above ‘reveal large  discrepancies betweén buoy- and

satellite-IAHR "(3PW)  H,100, indicating differences
between altimeter data anch in situ measurements that are
siznificant for estimating extreme H,. Our results also'show
that “these discrepancies are significantly  reduced - when
estimates of H, 100 made using altimeter data are obtaimed
with:a FT 1 distribution. fitted to 1TDM daia.

‘The fact that ‘a series of altiméter H, maxima, sclected
using the POT method to feprosent storm events, provides
estimiates ‘of H,100 that ‘systematically underestimate the
target buay-derived #1100, suggests that some degree of
undersampling of ‘storm maxima - by--altimeters on board
Farth-orbiting - satellites 18" occurring, Support - for . this
hypothesis is -provided in oFig o 4(), which shows 2
scatter=plot-of “co-located sateilites and * buoy-derived
mwonthly . B maxima st selected:validation. sites.  This
figure reveals “that monthly &, maxima: extracted from
the altimeter database  systematically - underestimate  the
corresponding monthly buoy maxima,-thus indicating that

—othe satellite measurements - missed or misrepresented a

significant number-of severe ‘sea siates during the period
covered by the combined altimeter dutabase, Thisdssue and .
its effects on the ‘altimeter-JAHR estimates of #,100 are
examined next g

514 Satellite undersappling and POT dute
Several factors may cause altimeters on board satellites
o undersample storm . #.. The most conspicuons s/ the

‘satellite -orbital ‘cycle, which determines the thme interval

between two consecutive passes overtha sate point ({.e. the
sampling: raie). Two. other important: factors. are the
geometrical properties.of the orbitand the development of
gaps during certainperiods of time or 4t particular locations.
The first factor-Jeads: 1o different spatial covetage or
tesolution of the ocean surfacs as 3 functionof geopraphical
location. The second ‘factor arises as a consequence of
chacacteristics: of “satellite ‘missions; mallunctioning or
spurious radar retwims ‘due to proximity of land or other
obstacles, such’ as- pack ice. The ‘effects of ‘gaps g the
avanlable time series will be-examined . in a following
subsection. " In this “subsection - we ‘oxaming the “under.
sampling resulting from the satelfite orbital cycle and its
offects - on.estimates of “H 00 made ‘nsing “the JJAHR
recommended: practice.

We begin by estimating the average sampling Intervals
associated with the merged database of altimeter measuie-
ments “used: presently, defined as; the rocan time between
consecutive passes within 2° X 2% mesh elements centered at
NODC/NOAA bioy sites. These average sampling intervals

sare asfollowss TUh at4 1002, 71 hat 42001, 72 1 at 42002,

57 haat 44004, 56 hoar 46001, 69 h at 46002, 56:h at 46003,
$6hat 46005 and 69 b at 51001, These values reflect a
global average of all satellite missions. Furtheomore, they
represent the time interval. between consecunive satellite
pisses’ over any . point-within‘a mesh clement, which is

< consistent with the assumption that measurements ‘made
anywhere “within: a. mesh: element are’ representative “of





[image: image8.png]174

......

099w — S

095t - .......... ' ...........
0.9 :
08t

0.5/

F(h)

0.1t
6

(d)

J.H.G.M. Alves, L.R. Young / Applied Ocean Research 25 (2003) 167-186

.......................................
......................................

.......................................

Fig. 3. Diagram showing observations (black circles) and model estimates (continuous lines) of the distribution function F (h;), i.e. the probability of non-
exceedence of A, against values of H at buoy 46006, as follows: (a) 3PW model fitted to buoy-POT data using maximum likelihood, (b) 3PW model fitted to
altimeter-POT data using maximum likelihood, (c) FT1 model fitted to IDM data using maximum likelihood and (d) FT1 model fitted to IDM data using a

weighted method of moments.

the center-point. Therefore, the average sampling intervals
mentioned here should not be mistaken for the repeat or
revisit time interval of the satellite footprint over any given
point, which is of the order of four to eight times larger.

A global view of sampling averages in hours is provided
in Fig. 5, which also gives an impression of the spatial
coverage of data from the combined altimeter database
(higher pass densities are found along preferential tracks of
the three satellite missions). Regions of higher pass density
occur in higher latitudes and are, therefore, associated with
higher spatial resolution relative to areas near the Equator.
This zonal dependence of sampling intervals and, conse-
quently, of spatial resolutions may seem a problem in a
global climatology of extreme H,, which may also have
been amplified by the use of a grid consisting of regular
mesh elements. Fig. 5 reflects the overall density of satellite
passes within mesh elements for the combined database.
A mission-specific description of track density and spatial
resolution may be found in Refs. [7,11,12] for Geosat, ERS-
1 and Topex/Poseidon, respectively.

Nevertheless, some investigations [16,26] support the
idea that, on a global scale, the wave climate has larger
decorrelation scales near the Equator, which is signifi-
cantly reduced toward higher latitudes. We assume
presently that this effect counteracts the zonal depen-
dence of sampling intervals seen in Fig. 5, noting that
biases of altimeter-derived H,100 computed so far do not
seem to reflect any dependence on latitude. Although this
assumption may be reasonable for the present analysis,
which focuses on the climatology of extremes on a
global scale, some potential limitations in terms of

impacts on local wave climatology of extremes warrant
further research.

These average sampling intervals are clearly much
larger than the common measurement intervals of in situ
buoy data, typically 1 or 3h. To investigate how these
long sampling intervals affect the estimation of extreme
Hg, buoy data were resampled at times corresponding to
+30min from satellite passes within 2° X 2° mesh
clements centered at each buoy location. These
resampled, co-located data were then used to provide
estimates of JAHR H,100.

Results are summarized in Table 4, which also indicates
the bias of resampled buoy-IAHR H 100 to the target
values (Ag%) from Table 2 and to the altimeter-IAHR
H100(A5 %) from Table 3. The impact of resampling buoy
data at times co-located with measurements from the
altimeter database is dramatic. The bias of H 100
calculated from resampled buoy data indicates a systematic
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Fig. 4. Scatterplot of monthly maximum H; values from the combined
satellite altimeter database (Altimeter H,) against in situ observations
(Buoy H;) at 10 NOAA deep water buoy locations. Results for (a) 2° X 2°
and (b) 4° X 4° mesh elements are shown.
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Fig. 6. Time series of H; measured during (a) the ‘storm of the century’ at buoy 42001, (b) hurricane Gilbert at buoy 42002 and (c) hurricane Allison near buoy
42001. In panel (a) both satellite and buoy made consistent samples of maximum waves associated with the event. Panel (b) shows a case in which the altimeter
missed the storm peak, whereas panel (c) shows a case in which buoy measurements underestimated significantly the maximum waves sampled by the
altimeter. Hourly buoy data appear as continuous lines; symbols represent median (A) and maximum (V) altimeter values and buoy values resampled at the

mean altimeter track time (O).

satellite is more effective than the single-point buoy
observations in capturing some storm events, in this special
case in which buoy and altimeter sampling rates are
comparable. This ‘compensation effect’ explains the larger
discrepancies of resampled buoy data seen in Table 4.
Although somewhat beneficial, the larger spatial
coverage is not enough to overcome storm undersampling
by the satellite-borne altimeter and its effects on
estimating H 100. In other words: these results indicate
that the sampling rate is critical given the temporal and
spatial scales of orbital cycles from satellite missions
considered presently. Consequently, satellite-derived
H,100 estimated using POT data and the 3PW distri-
bution are negatively biased relative to estimates made
from hourly buoy data. These roles are inverted by

resampling buoy data at times co-located with the times
of the satellite within a 2° X 2° mesh element around the
buoy site. Most estimates of H;100 made with resampled
buoy observations using POT data and the 3PW model
present a negative bias relative to altimeter-derived
TAHR/POT H100. This is a likely consequence of the
larger spatial coverage of satellite track relative to the
single-point buoy observation, as supported by Fig. 6.
The spatial compensation for time undersampling in
satellite observations seems less effective for the purposes
of estimating H 100 in areas exposed to both extratropical
and tropical storms relative to areas where only extra-
tropical storms occur. There are at least two reasons for this.
One is that the difference between average and storm H,
values in areas exposed only to extratropical storm events
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is not as large as this relative difference when areas exposed
to tropical storms or hurricanes are considered. Conse-
quently, the undersampling of storms has a relatively larger
impact in areas exposed to hurricanes.

The second reason for a greater effectiveness of this
spatial compensation in areas exposed only to extratropical
storms has to do with the relatively larger size of these
storms. Typical sizes of wave-generating wind fields in
extratropical storms are of the order of magnitude of the
2° X 2° mesh elements. Hence, the probability that both co-
located buoy and satellite data will capture the same event is
high. Also, since the satellite will sample across a larger
area, the chances that it will capture the sector with stronger
winds and higher waves is also greater. Therefore, satellite-
derived H 100 will tend to be less-biased than estimates
made with resampled buoy data, as seen in Table 4.

This effect is even greater in areas exposed to tropical
storms or hurricanes, which have sizes typically of the order
of tens of kilometers. In this case, not only will the satellite
track have a larger chance of recording the highest waves
sector, but it will capture storms that are completely missed
not only by the point-resampled buoy data, but even by
hourly buoy records, as seen in Fig. 6(c). This explains why
the estimates of H 100 made with resampled buoy data
discussed previously present a larger negative bias relative
to hourly-buoy-derived H 100 than the altimeter-derived
estimates of H,100. '

The empirical evidence presented in this section

indicates that the superior spatial coverage of satellite
measurements relative to point in situ observations partly
compensates for time undersampling resulting from proper-
ties inherent to satellite orbital cycles. Although this
provides some insight into the nature of measurements
made by satellite altimeters, from the practical point of
view, temporal undersampling is still a predominant source
of error for the purposes of calculating H;100 using the POT
method. This leads to POT-based estimates of extreme
values that are generally much smaller than those obtained

using hourly buoy data. A potential alternative to reduce this
effect by using data from larger, 4° X 4° mesh elements is
examined in the next section.

5.1.2. Altimeter data from 4° X 4° mesh elements

The effect of increasing the satellite database mesh
element size to areas covering 4° X 4° in latitude and
longitude is illustrated in Fig. 4(b), which presents a
scatterplot of monthly altimeter-derived H; maxima against
buoy-derived monthly maxima. A comparison of this figure
with Fig. 4(a) suggests that these larger mesh elements
provide series of altimeter-derived monthly H, maxima that
are more consistent with buoy data.

We may speculate that estimates of H,100 with reduced
bias may also be obtained by using larger 4° X 4° mesh
elements. This approach, however, may have a drawback,
since the expanded area relative to 2° X 2° mesh elements
may be so large that observations belonging to areas with
different wave climatology are combined into time series
that should be representative of the same point. This, in turn,
would compromise the statistical reliability of estimated
H100. To examine more closely these issues we compare
estimates of H;100 made from altimeter data extracted from
4° X 4° mesh elements with the buoy-derived IAHR H 100
from Table 2. Statistical reliability of these new estimates of
H,100 is measured in terms of the three goodness-of-fit tests
previously defined. Results of this comparison are presented
in Table 5.

A comparison between Tables 3 and 5 reveals that the
larger mesh elements had little overall impact on estimates
of H;100 made using IDM data and the FT1 distribution,
except for a poorer performance of 4° X 4° elements in terms
of goodness-of-fit scores. On the other hand, the bias of
estimates made with POT data and the 3PW distribution was
significantly reduced, whereas the statistical reliability of
these new estimates remained unchanged. This improve-
ment in estimates of H;100 made with POT data is illustrated
in Fig. 7, which should be compared to Fig. 2(a). FT1 model

Table 5

Estimates of H,100 made using 4° X 4° altimeter data

Site H100 (m) IAHR/alt Np C/R/T A% H 100 (m) FT1l/alt  N; C/RIT A% H 100 (m) WFT1/alt  N; C/R/IT A%
41002 15.81 £ 5.53 104 F/P/P 2320 10.74 £ 097 970 F/P/F —1633 1221 +0.97 970 F/P/F —4.88
42001 8.60 = 3.42 125 F/P/F —526 8.07 £ 0.62 811 F/P/F —11.10 8.20=* 0.62 811 F/P/F —9.65
42002 7.04 * 1.24 116 P/P/P —19.02 8.09 = 0.60 882 F/P/F —7.00 8.21 £ 0.60 882 F/P/P —5.61
44004 1495 = 2.96 123 P/P/P 15.53 13.20 £ 1.17 1069 F/F/F 196 14.23 £ 1.17 1069 F/F/F 9.97
46001 13.85 = 242 234 F/P/P —1205 1587 134 1779 F/P/F 0.81 15.75*1.34 1779 F/P/F 0.04
46002 10.83 = 1.49 125 PP/P —3166 1491+ 1.14 1269 F/P/F —589 1521 *x1.14 1269 F/P/F —4.01
46003 15.00 *= 2.33 185 P/P/P —16.13 1782%x 1.44 1528 F/P/P —036 1778 £ 144 1528 F/P/F -0.61
46005 13.46 = 2.27 138 F/P/P —-1056 16.05* 1.24 1471 F/P/F 6.68 1625*1.24 1471 F/P/F 7.97
46006 13.02 = 2.06 129 P/P/P =791 1677 £ 1.32 1177 F/P/F 568 17.18 £1.32 1177 F/P/F 8.32
51001 941 = 1.44 125 F/P/P —1851 10.05£0.72 1212 P/P/P —1293 1030 = 0.72 1213 F/P/P —10.82
Hbken 13.74 = 2.25 141 P/P/P —8.11 16.89 = 1.43 446 F/P/P 1298 1755%143 446 F/P/F 17.36
1A%] 16.18 743 7.20
A% -9.13 —-2.32 0.73

A description of other indicated parameters is given in Tables 2 and 3.
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Fig. 7. Estimates of H;100 made with data from 4° X 4° mesh elements. Shown are values computed using buoy data and the IAHR recommended practice
(squares) with associated 95% confidence intervals (shaded regions) and estimates of H,100 made with altimeter data using the IAHR recommended practice

(triangles).

estimates were not included in Fig. 7 as they were nearly
identical to those plotted in Fig. 2(b) and (c).

Parameters of the FT1 model are estimated to provide a
best fit to IDM data, i.e. the entire collection of
measurements made at a particular location. An initial
assessment of how the properties of IDM data from 2° X 2°
and 4° X 4° mesh elements differ may be made by testing
their statistical equivalence. Using a two-sample ¢-test [22]
we conclude that the two samples are statistically equivalent
at a 90% confidence level. This equivalence is illustrated in
Fig. 8, which shows a scatter-plot of monthly mean H,
derived from 2° X 2° and 4° X 4° mesh elements.

Tables 3 and 5 reveal that estimates of H;100 made using
POT data extracted from 4° X 4° mesh elements are, in all
cases, higher than H;100 computed using 2° X 2° data. As
discussed previously, Fig. 4 indicates that increasing the
mesh-element size also increases the chances of the satellite
track encountering a larger number of storms and/or storm
sectors of stronger winds not ‘seen’ by 2° X 2° mesh
elements. Consequently, estimates of H 100 made using
POT data from 4° X 4° mesh elements are relatively higher
and closer to the target buoy-derived IAHR/POT H100.

Results presented in this section indicate that an increase
in the mesh-element size from 2° X 2° sectors to 4° X 4° may
be beneficial to the estimation of H 100 using POT data and
the 3PW distribution. However, the increased mesh-element
size had little or no impact on estimates of H 100 made
using IDM data and the FT1 model. Considering the
positive impact to the former, our global analysis of H 100,
presented below, is based on outcomes from databases
composed of both 2°X2° and 4° X 4° mesh elements.
Before advancing that far, we examine next the effects of the
‘seasonal’ signal in the altimeter data, on the estimates of
H100.

5.1.3. Weighted FTI

Seasonal fluctuations in the number of satellite passes per
month (monthly measurement density) within mesh
elements of the altimeter database may affect the estimates
of H 100, particularly when IDM data are used. These

seasonal fluctuations result from a combination of factors

inherent to satellite missions, such as periods of malfunc-
tioning or maneuvering and, more importantly, the time of
year in which these satellite missions were initiated and
concluded. Coincidentally, Geosat observations became
available on December 1986, while ERS-1 data were

collected from August 1991 and TOPEX/Poseidon
measurements were obtained from November 1992. The
combination of the three data sets resulted in a greater
proportion of observations being made during the northern
hemisphere winter. This is illustrated in Table 6, which
shows the monthly measurement densities of the altimeter
database at selected buoys sites.

The effects of non-uniform distribution of passes may be
reduced by extending the database to include earlier Geosat
data recently made available and ERS-2, TOPEX/Poseidon
and data from other altimeter-carrying satellites collected
since 1995. However, this larger database is not yet
available. Therefore, we assess the impact of this limitation
to estimates of H;100 made using the combined database
presently available using a simple but effective approach to
reduce the non-uniform monthly measurement density.
Following Carter [3], this approach consisted of recalculat-
ing the parameters of the FT'1 distribution using a weighted
method of moments (henceforth WFT1), which is based on
the following two steps:

1. Eliminate the non-uniform distribution by recomputing
the sample mean and variance, as follows:

N Zpi/ni

P~ ©)
XN 2 qiln &9

T T H#

where p is the sum of Hy, g is the sum of squares of H,
and n is the number of observations within each month
i=1[1,12].

2. Recalculate a; and by, the location and scale parameters
of the FT1 distribution (Eq. (2)), using the following
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Fig. 8. Scatterplot of monthly mean satellite observations of H, comparing
data from 2° X 2° and 4° X 4° mesh elements.
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Table 6
Density of satellite passes throughout the year at each buoy location
Buoy Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
41002 35 37 38 39 38 29 28 38 35 42 51 54
42001 51 45 46 38 26 24 18 21 24 35 38 46
42002 55 47 45 41 36 26 16 26 20 31 40 42
44004 62 55 65 50 438 33 34 39 35 38 52 64
46001 70 63 67 82 76 63 65 75 57 66 66 80
46002 59 63 63 59 57 44 44 58 44 52 61 67
46003 87 84 83 81 73 58 60 65 47 60 70 74
46005 67 71 54 67 61 50 43 72 61 60 73 78
46006 43 40 38 49 52 37 41 54 46 50 53 58
51001 43 34 44 4°5 55 39 51 63 43 51 59 55
Hbken 38 43 51 45 20 12 8 10 5 6 15 27

expressions, which equate the weighted estimates of the
sample mean and variance to the population mean and
variance of the FT'1 model:

= ag + b
2,2

N b

#-Th,
6

where y = 0.5772 is the Euler number. _

Estimates of H,100 made with the WFT1 using 2° X 2°
data are presented in Table 3. Fig. 2(c) shows these
estimates plotted against the buoy-derived IAHR H 100.
The WFT1 provides estimates of H 100 that are very close
to buoy-derived H 100 (the mean absolute bias was 7.39%),
repeating the agreement obtained with estimates of H 100
made with the FT1 distribution with unweighted parameters
(see Table 3). Also, in the majority of locations altimeter
estimates again fell within the 95% confidence limits of
buoy-derived H;100. We conclude that both weighted and
unweighted FT'1 models produce estimates of H;100 that are
very similar, which confirms results previously reported by
Carter [3].

Tables 3 and 5 also indicate the results of goodness-of-fit
for WFT1 H,100 based on the same tests applied to the
unweighted FT1 estimates. A noticeable reduction in the
number of pass levels relative to the latter is likely
associated with the fact that the WFT1 model is being
compared to uncorrected IDM data. Since this IDM data
remains contaminated by the seasonal bias eliminated in the
WEFT1 model, the resulting weighted model distribution will
fit less-well the biased empirical distribution when com-
pared to the performance of the unweighted FT1 model.
Consequently, whenever the WFT1 model is used, the
goodness-of-fit tests chosen become useless as a statistical
inference tool.

It is, thus, fortunate that the unweighted FT'1 model

provides estimates of H 100 that are coherent with the
unbiased WFT1 model, as they are associated with
statistical models that can be assessed properly in terms of

goodness-of-fit. Assuming that this coherency may be

extrapolated for other sites around the globe, the next

section presents an assessment of global estimates of H 100
made with the FT1 model using the complete combined
altimeter database, with data from both 2° X 2° and 4° X 4°
mesh elements. Goodness-of-fit tests provide a statistical
basis for comparison of these estimates with global values
of H,100 computed using POT data and the 3PW
distribution, which are also presented below.

5.2. Global estimates of H,100

In this section we present the results of a global analysis
of extreme wave height using the database of combined
Geosat, Topex/Poseidon and ERS-1 altimeter measure-
ments of Young [29]. As mentioned above, the two
techniques used in our analysis are the method rec-
ommended by the IAHR, consisting of using POT data
and the 3PW model, and an approach based on the FT1
model fitted to IDM data. The choice of these two methods
for our analysis of global extreme H; is based on the results
and discussions presented above.

In brief, the JAHR method was chosen because it has
been proposed and used as a standard for the analysis of
extremes computed using buoy data. Although our vali-
dation analysis indicated its application to altimeter data
does not provide estimates of H;100 consistent with buoy-
derived extremes, it is interesting to assess its behavior on a
global basis in terms of spatial coherency and statistical
reliability. On the other hand, the FT1 model applied to the
altimeter database delivers estimates of H 100 that are in
very good agreement with buoy-derived estimates, but have
a relatively poor statistical reliability in terms of goodness-
of-fit tests. Thus, it is also interesting to examine its
behavior on a global basis.

Considering the validation analysis presented above,
estimates of H 100 made using POT data and the 3PW
model were made with satellite observations from both
2°% 2° and 4° X 4° mesh elements. Global estimates of
H100 made using IDM data and the FT1 model were also
made with observations at the 2°X2° and 4°X4°
resolutions. The statistical reliability of all global estimates
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Fig. 9. Representative areas of the world’s oceans used for analysis. I: Northern Pacific Ocean, II: Northern Atlantic Ocean, III: Indian Ocean, IV: Tropical

Pacific Ocean, V: Tropical Atlantic Ocean, VI: Southern Ocean.

of H 100 is assessed briefly in terms of the three goodness-
of-fit tests described previously. To assist in our interpre-
tation, the global ocean is divided in six areas as illustrated
in Fig. 9.

5.2.1. POT/3PW approach

Global values of H;100 computed using POT data from
2° X 2° mesh-elements and the 3PW model are shown in
Fig. 10. The most striking feature of this figure is a high level
of spatial variability between adjacent mesh elements,
which contrasts with a smooth spatial distribution of H,100
that would be expected from a purely intuitive viewpoint.
Fig. 11 shows the distribution of associated goodness-of-fit
scores, which are organized into four categories based on
passes or failures at the 95% confidence level of the three
statistical test previously defined. These categories are: pass
three tests, pass any two of three tests, fail any two tests and
fail all tests. |

Table 7 provides the percentage of 2°X 2° mesh
elements falling into the four score categories for

goodness-of-fit mentioned above. Results are indicated
for regions identified in Fig. 9. Confirming the relatively
good results of the POT/3PW approach described in
Section 4 in terms of the goodness-of-fit tests chosen for
this study, the 3PW model seems to fit well the satellite-
derived POT data in most areas, as seen in the global
distribution of goodness-of-fit scores shown in Fig. 11.

Table 7 indicates that the percentage of mesh elements in
which the 3PW model fit to POT data passed at least two or
all three tests was over 80% in all areas. This performance
was particularly good within the Indian Ocean, the Northern
and Tropical Pacific and the Northern Atlantic Oceans,
where the model fit passed at least two or all three tests in
90% of the cases. Slightly poorer performance was recorded
in the Southern Ocean and in the Tropical Atlantic Ocean,
where the percentage of points passing two or three tests
was approximately 85%.

The success of the 3PW model in fitting altimeter-
derived POT data in terms of the chosen goodness-of-fit
tests is encouraging. However, a successful fit of a statistical
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Fig. 10. Global values of H;100 computed using POT data from 2° X 2° mesh-elements and the 3PW model.
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Fig. 11. Goodness of fit scores associated with the values of H;100 of Fig. 10. The shading levels reflect the number of tests passed/failed at the 95% confidence

level.

model to a chosen dataset does not necessarily represent a
successful estimation of the desired parameter, as demon-
strated in the validation of altimeter-derived H 100
computed using the POT/3PW approach presented in
Section 4. These validated altimeter-derived values of
H 100 were systematically lower than the associated buoy-
derived target values. Thus, it is reasonable to assume that
the altimeter-based global H,100 may also be under-
estimations of the true values. A possible strategy to verify
this assumption is to simulate the ‘flight’ of a satellite
collecting data from long-term simulations of wave fields
generated by wind-wave models, following the guidelines
set by Cooper and Forristall [9], but using more sophisti-
cated wind and wave hindcast techniques instead of simple
parametric models. This is left for a future study.

A reason for greater concern is the high short-scale
spatial variability of H;100 (of the order of the 2° X 2°
mesh-element size) seen in Fig. 10. We examine a potential
way of overcoming this intuitively-incorrect spatial distri-
bution of H 100 by using POT data extracted from larger,
4° X 4° mesh elements. Results presented in Section 4
indicated that this may also be a potential way of obtaining

Table 7

estimated H 100 in closer agreement with those obtained
using in situ data. Results are shown in Fig. 12. Although the
short-scale spatial variability of H 100 is significantly
reduced compared to Fig. 10, the result is still counter-
intuitive. Further, Table 7 indicates that the use of data from
4° X 4° mesh elements leads to a systematic increase in the
percentage of locations where the 3PW fails to fit well the
POT data. '

Table 7 indicates that the goodness-of-fit remains fairly
high (above 80% of locations passing two or three tests) in
the Southern Ocean and the northern latitudes of the Pacific
and Atlantic Oceans, although some reduction in perform-
ance is observed. On the other hand, the tropical regions of
the Pacific and Atlantic Oceans and the Indian Ocean show a
substantial decrease in performance, which is also observed
in the overall scores for the entire globe.

The poorer statistical performance due to the use of
larger mesh elements may be a consequence of using data
from a region that is so large, that it includes observations
from areas with different wave climatology. According to
Tournadre [5], it is not possible to determine precisely the
optimal sizes of areas within which the wave climatology

Percentage of mesh elements satisfying each of the four categories used for assessing goodness-of-fit POT data to the 3PW model

Region 2°%2° 4° % 4°
Pass all Pass 2 Fail 2 Fail all Pass all Pass 2 Fail 2 Fail all

SO 53.2 29.5 14.9 24 49.0 29.1 19.1 2.8
10 594 32.3 5.9 24 37.0 299 , 25.8 73
NP 75.3 194 4.7 0.6 63.5 254 9.6 1.5
TP 59.3 31.2 6.3 3.2 36.4 30.5 23.9 9.2
NA 69.8 24.5 54 0.3 58.5 314 9.1 1.0
TA 53.6 30.8 12.6 3.0 359 30.1 26.7 7.3
ALL 59.5 28.9 93 2.3 45.3 293 20.2 5.2

Results for 2° X 2° and 4° X 4° mesh elements are indicated. Regions are defined according to Fig. 9 and named as follows: Southern Ocean (SO), Indian
Ocean (I10), Northern Pacific (NP), Tropical Pacific (TP), Northern Atlantic (NA), Tropical Atlantic (TP) and overall or global (ALL).
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Fig. 12. Global vales of H;100 computed using POT data from 4° X 4° mesh-elements and the 3PW model.

could be considered homogeneous. On a first approxi-
mation, however, these areas could be related to circular
regions with diameters consistent with the spatial scale of
decorrelation for observations of H,. Based on the results of
Tournadre [5], these would be approximately 200 km for the
equator and 60 km at higher latitudes, which lead to regions
with sizes of the same order of magnitude of 2° X 2° mesh
elements, but much smaller than 4° X 4° areas.

5.2.2. IDM/FTI approach

Fig. 13 shows the resulting global values of H 100
computed using IDM data from 2° X 2° mesh-elements and
the FT1 model. In contrast to the marked short-scale spatial
variability seen in Fig. 10, the global distribution of IDM/
FT1 H100 is relatively smooth as would be expected from
an intuitive perspective. Goodness-of-fit scores associated
with the estimates shown in Fig. 13 are shown in Fig. 14.
These scores are organized into four categories based on

120
T

180
T

passes or failures at the 95% confidence level of the three
statistical tests previously defined (see above).

The percentages of 2° X 2° mesh elements falling into the
four score categories for goodness-of-fit (pass three tests,
pass any two of three tests, fail any two tests and fail all
tests) are summarized in Table 8 within the regions
identified in Fig. 9. This table indicates that the IDM data/
FT1 model combination provides estimates of H,100
extrapolated from a statistical model that fails to fit the
IDM data in nearly 50% of locations around the globe.
Fig. 14 illustrates the global distribution of goodness-of-fit
scores associated with the values listed in Table 8.

Despite a generally disappointing performance on a
global basis, the IDM/FT1 approach performs very well in
terms of goodness-of-fit within the Southern Ocean. The
performance is acceptable in most locations in the Tropical
Atlantic and Pacific Ocean regions. In northern latitudes of
the Pacific and Atlantic the goodness of fit of the IDM/FT1
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Fig. 13. Global values of H;100 computed using IDM data from 2° X 2° mesh-elements and the FT1 model.
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Fig. 14. Goodness of fit scores associated with the values of H;100 of Fig. 13. The shading levels reflect the number of tests passed/failed at the 95% confidence

level.

approach is poor, with locations failing two or three tests in
approximately 70% of the cases. The worst goodness-of-fit
scores occur in the Indian Ocean, where failure in two or
three tests occur in nearly 80% of locations. Within the
Indian Ocean region, the Arabian Sea is identified as an area
where the IDM/FT1 approach fails all three tests in more
than 90% of the locations.

The results of our global analysis once more confirm the
validation of satellite-derived H;100 presented in Section 4,
where the goodness-of-fit of long-term extremes passed two
or three tests in nearly 50% of the validation sites. We
should, however, bear in mind that despite the poor
performance in terms of goodness-of-fit, the IDM/FT1
approach provided the satellite-derived estimates of H 100
best matching the target buoy-derived POT/3PW H 100
(Section 4). Assuming that these results may be extrapolated
to other locations around the globe and considering that the
POT/3PW estimates of H,100 from either 2° X 2° or 4° X 4°
generally underestimated the target buoy-derived values, we
conclude that the IDM/FT1 approach would be the best
choice for determining extreme values of H;100 computed
using satellite altimeter measurements of H.

Our validation analysis showed that IDM/FT1 H 100
computed using data from 2°X2° or 4°X4° mesh
elements are nearly identical. Again, these outcomes
were confirmed by a comparison of global H,100 at both
these resolutions. Although the global distribution of
values from 4° X 4° data was slightly smoother than in
Fig. 13, the bias was negligible at all locations.
Consequently, a global plot of these estimates is not
shown,

Goodness-of-fit statistics for 5,100 estimated using the
IDM/FT1 approach and 4° X 4° data within the regions
identified in Fig. 9 are given in Table 8. Repeating the trend
identified for estimates made with the POT/3PW approach,
the larger mesh-element size cavsed a general relative
degradation of goodness-of-fit which was even greater than
that of the POT/APW analysis. We believe that this may
have resulted from a combination of using data from a
region including areas with slightly different wave clima-
tology with the fact that for larger areas the number of IDM
points increases accordingly, inducing a decrease of
statistical tolerance for differences between the model and
empirical CDiFs,

Table 8
Percentage of mesh elements satisfying each of the four categories used for assessing goodness-of-fit of IDM data to the FT1 model
Region 2°%2° x4

Pass all Pass 2 Fail 2 Fail all Pass all Pass 2 Fail 2 Fail all
SO 37.6 250 35.6 1.8 18.0 16.8 58.3 6.9
10 11.3 13.1 65.7 99 45 5.7 67.5 22.1
NP 93 21.2 65.8 3.6 3.1 6.9 76.2 13.9
TP 20.4 18.5 3.2 79 83 16 63.9 20.2
NA 10.5 244 62.6 2.5 32 6.5 76.2 14.1
TA 25.5 20.8 46.5 6.6 10.0 1247, 60.3 17.0
ALL 22.9, 20.5 50.9 5.7 9.8 15.8 68.5 59

Results for 2° X 2° and 4° X 4° mesh elements are indicated. Regions are defined according to Fig. 9 and named as follows: Southern Ocean (SO), Indian
Ocean (I10), Northern Pacific (NP), Tropical Pacific (TP), Northern Atlantic (NA), Tropical Atlantic (TP) and overall or global (ALL).
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323 Climarie properties of Extreme H

Diespite differences between - global #,100 Helds shown
i Figs, 12 and 13 these figures also show some Teatires Ui
are vobust enough o allow. s qualitative description of a
global climatology of extromes. Consistent: with other
descriptions of the general properties of the global wave
slimate 11.3:4.30] among others), the first and miost siriking
feature is the zonal (atitudingl) variation of maxima Three
*helis” are clearly identified in both hemispheres; as follows:

® A higher latitude region above 40% of latitude toward the
poles, where values of H 100 are typically large;

+ An equatorial belt “located -approximately within: the
region extending from 20°8 10 20°N dominated by low
HA0G and

& A subtropical or mid-latitude transitional zone between
20 and 40°,

The largest values of computed H,100, ranging from
approxithately: 15t 25w, oceur in the high latitude zone.
where intense winds develop in association with mid-
Iatitude stonin systems or long westerly feiches; Except in
areas - exposed o hurricanes, “the equatorial. zone 3§
dominated by persistent srade winds that are.” however,
notintense enough 1o generate Severe sey states, Conse-
quently, swell “generated in - higher fatitudes “are the
predominant. 'wave systems . within ' the ‘equatorial “belt,

which results/in H,100 ranging typically from approxi-

mately 5.0 10.m: Subtropical regions form 4 transitional
belt “dominated: by -large “atmospheric: gyres sufrounding
semi-permanent high stmospheric: presstire areas: Severe
sea-states: in these regions are usually associated with the
propagaton-of cold fronts and/or the penetration of storms
formed in higher Iatitodes. Values of #,100 range typically
from 8o 14 m.

However well defined, these zonal belts.do notallow the
highlighting of ‘some well-marked rtegional characteristics
that are evident after a-closer examination of HFgs. 12 and
13, A more satisfactory approachiis provided by Young [41,
who describes regional variations of wind and wave chimate
over the global ocean within seven elimatic zones: northern
iatitides, northern sub-tropics, equatorial regions. southem
sub-tropics, southern latitudes, Bastern Pacificand Arabian
Sea. Excluding ihe Bastorn Pacific region; the remaining
zones are also useful for characterizing the distribution of
H,100 ona synoptic scale.

Within the northern fatitude region; both Nerth Atlantic
and North- Pacific “basins presént similar extreme H,
conditions: registering - the  ighest A 100 on the globe:
However, larger areas with #.100 10 excess of 20 m ocour
within the North Atlantic basin, particularly near the Noith
Sea,suggesting this region 1% the roughest on the. globe.
Comparable m roughness to the North Atlantic basin are the
southern latitudes; where high H, 100 values are found inthe
Indian-Southemn basin within the ‘lriple-A triangle’ formed
by Africa, Australia and Aptarciica ~

Young. {4} considered global mean monthly conditions
and argued that sea-states found in the sub-tropical regions,
particolarly ‘within' the Indian, the Pacific and the South
Atlantic Oceans, are largely associated with the penetration
of swell generated by severe siomms in the Sonthern Ocenn
and at higher northern latitudes: A milder wave climate in
the relatively nafrow Norho Atlintie basin may result from
the distribution of land'masses that blocks the penetration of
swell from higher latitudes.

The extreme conditions  tepresented by the vidues of
H 10U in the present analysis are mhore likely associated
with local stors, rather than remotely genefated swell, The
mean-monthly: elobal distributions of Young {4] showed
‘tongues’ of wave height extending from the high latifude
stormn . fegions Linto” the -Subsiropics. and’ tropics. These
features ate ot evident in-the H 100 fields of Fig. 13
Mean monthly statistics also revéal a more globallv untfonn
wave field . than' does: H, 100 The results of “Young {4]
showed. that, ‘typically, ‘migimum and’ maximum mean
monthly H ranged between 1.5 and 5.5 m: avariation of'a
Tactor of approximately 3.7, In contrast, 100 values vary
between 5 and 25 m, u factorof 50, Again; these results
support the conclision that mean global values of H, are
largely determined by high latitude storms and the resulting
swellpropagation, whereas extreme . valuey ars largely
determined by local storm events,

It should be remermberad that the, already: highlighted,
deficiencies in samipling density of the satellites will have s
significant impact on ‘wopical and  sub-tropical regions,
where' tropical eyclones are a dominant forcing event,
In-these regions, values of ~H 100 are likely 1o be
underestitnated.

Values of H,100 seem unusnally high within the Arablan
Sea, as seen clearly in both Figs. 12 and 13, This rezion
owes-its distinetive climatic' Characieristics to the ‘Asian
menseon, According o’ Young [4], during the summer
mensooia strong south-westerly jet develops close o the
African coast with monthly-mean surlace winds excesding
15.ms ' which genseate severe sea-iiates associated with
vatues of H 00 exceeding 14'm.

6. Discussion

The study of Cooper und Forristall (9] conelided that:
(A} combining - satellite measurements ~Over a radius
between 100 and 300 ki around the site. of interest yields
equivalent information to-hourly (buoy) measurements at
that site, and (B) 100-year (exireme) wave heights can be
estimated from satellite data using éxactly the same CDF
techniques that:are used for (buoy) measurciments a1 a sie;

Considering the aim of detefmining long-tefm extreme
values of Hothe present results) which: consider not
synthetic ‘but -actal saellite - and- buoy measurements,
indicate that stafement “A” ‘may be true ot false depending
on: the chosen - approach. In the .cuse of the TDM/FT
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combination, which s wvery sifnilar 1o the approach for
estimating exiremes followed by Cooper-and FPorristall [9%
then this pesule s valid However, when the POT3PW
approach is considered it iz no lenger applicable: In other
words, our results indicate that although' the satellite may
sample H fromasimilarnumber of storms detedted by an in
sitt device, as indicated by Cooper -and: Forgistall 191 and
also by our results wherrasing the 1DM/FT T approach, the
satellie database seems 1o, have missed ‘either a larger
aumber of more severe sea states or thelr periods of stronger
intensity, which gre ultinately associated with the-gener-
ation of-extrernes: This 'might have led 1o systematically
underestimated sateliite-derived  H 100 relative 10 buoy:
derived values.

o results also.shovw that statement “B’ is applicable
exclusively to the IDM/FTT approach and, in this Sense  the
results of Cooper and Forvstall 97 are totally supperted by
our-analysis. However; they refrain from using POT. data
claiming that *it i notvet glear how to apply.itto satellite
data’, since this method depends on knowing a-priori the
number of storms peciyear al & given - point ofinterest. 1o
using a deterministic’ approach 1 determine yearly storm
rates at given.oceanic sies, our study extends the analysisof
Cooperand Porristall |93 by indicating that undersampling
of storm peaks makes: approaches using satellite-derived
POT data invalid-for the purposes ol estimating long-term
extremic . :

The results presented above support the'idea that unless:

the number of satelites orbiting the earth and carrying wave
measuring devices is-greatly. increased, the best approach
for computing long-erm extremes from satellite data is 0
evalugte the accuracy and statistical reliability of 'methods
using DM data: A'next step inihat divection; which was not
pursued in-this study, would be 1o use statistical models
otherthan the FT1 distithution with TDM ddata.

The-conceptual framework justifying the use of 1DM
data and seeking more reliable statistical distributions fitting
the -entire -observational database 1uay also be extended 10
the determination of extreme M, using windswave model
data. Recent studies ‘ofs the skill of commonly ~used
operstional wind-wave models 1{2,23,24,31,321 have
revealed' excellent performance -of ' model . outcomes in
reproducing neartaverage seasstate conditions; bup signifi-
cuntly ‘poor. performance ‘in simulating storm peak # in
severe foreing conditions. Tn this sense, Hodata from wind-
wave model hindcasts have similar geveral propettiss 10
satellite altimeter measurements, Thus, we may-expecet that
using IDM data fo estinate long-term extreme M would-be
apotentiaily useful path 1o be followed.

There are many other relevant contributions to.the field
of investigation concerning the determination of long-term
extreme AL One taporant isue. that ~watrants further
discussion in the light of the resulis presented above tefers
ro'the time-length in consecutive vears needed for producing
a statistically-sound time series of H,. Results of Panchang
et 2l {21 ] indicate that values estimated from time series 5

ot oyears long are nearly identical, This result ds also
supporied by our-validation analysis presented inSection 4,
where nearly identival values of B, 100 were computed from
buoy . data truncated -at” the combined - satelliec database
measwrement period {nearly 1 years) and the full-lengthrof
i situ data {peneraily over 20 years). :
Anextensive - analysis of 'this dopic is presented dn
Labeyrie {33 who shows that parameters from models used
i extreme analysis vary by much less than 10% when
determined from 10-or 100-vear-long in sitw-data sets: He
suggasis that “the uncertainty due o the extrapolation siep
becomes quite negligible; the main difficulty i 1 ¢stablish
the timiting law properly’ . We conclude this discussion by
stressing that our resulis strongly=support this Statement. as
these: resulls indicate. in agreement with. e final con-
clusions of “Labeyrie - [33],that non-standard statistical
procedutes  should be developed “for assessing: practeal
approaches for computing long-term extreme wave heighis
and the assoctated statistical reliability, given the present
limdtation-inherent 1o satellite alumeter data:

7. Concluding remarks

The prosent analysishas considered & 10:vear combined
database of ‘satellite “altimeter. ‘observations of H.. This
analysis-has shown that such data’ can be used to obtain
reasonable. estimates of extreme wave condigions; such as
H A0

The following conclusions can be drawn:

L With only. a single satellile dperational at'any one tme,
the sampling density is such, that not all extreme cvents
willbe sampled, Therefore, methods such as POT, which
regsire accurate observations of extremes, will regult in
an underestimation of H, 100

2. Methods “which _use  all “observed data’ o estimate
extremes, such as 1M, will yield soore reliable results
in cases where # has been underestimated;

31 1DM s to be used, 111 essential that o statistical
extrapolation CDF ¢an be fited to the 1M data and stil)
yield ‘results applicable to extremes. That is; the CDF
st oot only. it tiebody - of - the probability. data
accurately, but also. ctitically, the exmeme tall;

4, Compatisons with: buoy: data indicate: that 1DM daln
exirapolated using the Fisher-Tippet type. 1 distribution
yields: acceptable resulis: There js, however,-seope ‘fo
investigate more appropriste distributions:

So0norder 1o use satelfite data for the -prediction of
extremes, it is necessary 1o binall data from sateiite
passes through a region around the point of interest: The
present results indicate that asquare of size 29 X 2% gives
aceeptable ‘results for this purpose. Larger 4°x.4°
squares seem o be so large that they may inclade dala
from regions.of different climatology;

6. Consistent with -previols: stadies, oue results indicate

that. o satellite  database of 10 vears duration..seems
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sufficiently: long to obtain consistent” extreme value
estimates, given the appropriate methodology is chosen.

7. The conceptual framework forestimating extreme B,
from altitneter. observations using “the FT1 miodel, in
wisociation with- 1OM data, 'may also be usetul- for
estimating extrémes from wave model data.
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