

Recent Developments in Navy NWP

Carolyn Reynolds, Nancy Baker, James Doyle, Douglas Westphal, Liang Xu, and Melinda Peng Naval Research Laboratory, Marine Meteorology Division, Monterey, CA, USA

- Global Prediction System: NAVGEM
- Earth System Prediction Capability (ESPC)
- Mesocale Systems: COAMPS[®]
- Aerosols: NAAPS and COAMPS[®]
- Next Generation System: NEPTUNE

NRL transitions NWP upgrades to our operational partner, Fleet Numerical Meteorology and Oceanography center (FNMOC)

	Navy Global Environmental Model GEM 1.3 currently being transitioned to FNMOC
Data Assimilation	NAVDAS-AR 4D-Var with Variational bias correction
NAVGEM 1.3 Upgrades	 Increased resolution from T359L50 to T425L60
	 New stratospheric physics for water vapor photo chemistry, sub- grid-scale non-orographic gravity wave drag, and stratospheric humidity quality control
	 New dynamics formulation utilizing perturbation virtual potential temperature to improve numerical stability and reduce semi-implicit decentering
	Convective cloud fraction predicted based on Xu-Randall
	 Improved initialization of ground wetness and temperature
Future Upgrades	 Short Term: dynamic sea ice (CICE) model via ESMF coupling, T681L80: (~19 km) and 0.01 hPa model top
	• Longer Term: 10 km resolution, interactive aerosols, coupled

atmosphere-ocean-ice-wave extended-range prediction system

- Current system: NAVGEM T239L50
 - 80-mem, 4 times per day, to 6h, 20-mem, 2 times per day, to 16 days
 - Banded local ET initial perturbations, no model uncertainty
 - Used to force surface wave ensemble
- Spring 2015 upgrade
 - Stochastic Kinetic Energy Backscatter with a moisture convergence mask (SKEB-MC)
- Overall positive impact, especially for 10-m wind speed
- Slow (6-h) vs. fast (40-min) temporal variability has bigger impact in summer

 FY15-FY16: SST initial perturbations, diurnal cycle, persistent anomaly capability, T359L60

NAVGEM 1.3 Hybrid 4DVar 90-day Benchmark Testing

Comparison: NAVDAS-AR (4DVar, α =0.0) and Hybrid 4DVar (α =0.5)

$$\mathbf{P}^{\mathbf{f}} = \alpha \mathbf{P}_{ENS}^{\mathbf{f}} + (1 - \alpha) \mathbf{P}_{CONV}^{\mathbf{f}}$$

Red Shading -> Hybrid DA is better; Blue Shading -> NAVDAS-AR is better

Earth System Prediction Capability (ESPC) NAVGEM-HYCOM-CICE Coupled System

NAVGEM-HYCOM-CICE seasonal prediction of Arctic sea ice minimum in line with other center predictions

Improvements to physics resulting in much better simulation of DYNAMO MJOs

Modified

NRL Monterey and NRL Stennis

COAMPS Overview

Coupled Ocean/Atmosphere Mesoscale Prediction System

•Data Assimilation:

•Atmosphere:

Ocean:
Ensemble:
Tropical Cyclone:
Field Projects:
Operations:
FNMOC & NAVO

Air-Ocean Two-Way Coupling

3D-Var: NAVDAS (Atmosphere), NCODA (Ocean) EnKF and 4D-Var (underway), Adjoint obs. impact Nonhydrostatic, NRL fluxes, PBL, NRL microphysics, LSM, dust/aerosols, Fu-Liou radiation Navy Coastal Ocean Model (NCOM), Wave (SWAN,WWIII) Ensemble Kalman Filter, Coupled Ensemble Transform COAMPS-TC, TC analysis, TC physics, moving nests DeepWave, HS3, TCI, CalWater, Trident Warrior Globally relocatable, 70+ areas (2-4x daily), $\Delta x \sim 1.6-27$ km, coupling, COAMPS-OS turn-key system, COAMPS-TC

Tropical Cyclone Capability

COAMPS® and COAMPS-OS® are registered trademarks of the Naval Research Laboratory NRL Marine Meteorology Division

COAMPS-TC Improvements

- •Synoptic scale initialization, blend zone, new terrain improve TC position forecasts
- Vortex initialization change improves intensity prediction, particularly at short lead times, mitigates "spin-down"
- COAMPS-TC 10-member EPS contributes to the HFIP Multi-model Ensemble

COAMPS

Impact of Unmanned Aerial Systems (ScanEagle)

Observation impact computed using adjoints of COAMPS and NAVDAS

Navy Aerosol Analysis and Prediction System (NAAPS) Components and Satellite Input

NAAPS: Global aerosol transport and evolution model

- Uses NAVGEM meteorology from T359L50 resampled to 1/3 ° spatial resolution
- Tracks Dust, smoke, sea salt, sulfate, SO2 (organics coming soon)
- Each species has its own complete microphysics and optical properties: wet and dry deposition, extinction coefficients
- The International Cooperative for Aerosol Prediction (ICAP, extra slide) multi-model ensemble

FLAMBE: Smoke source model for NAAPS

- MODIS and geostationary fire data used to estimate smoke aerosol release
- MODIS + GOES observations included 3-6 hours after overpass
- Global geostationary in development

NAVDAS-AOD: Aerosol assimilation for NAAPS

- Satellite aerosol optical depth variational assimilation in observation space (2D column integrated extinction)
- Uses MODIS AOD over land and ocean; VIIRS AOD over ocean will be assimilated soon

COAMPS Aerosol Modeling Aerosol Microphysics for NWP

<figure>

Output From Verification Package

Visibility threshold (km)	3.50	0000
total both dust obs total both clear obs total false postive total false negative total obs	221 1490 143 353 2207	10.01359 67.51246 6.479384 15.99456
Total dust observations: Dust Storm Prediction Rate: Dust Storm False Alarm Rate: Dust Storm Threat Score: Dust Storm Gilbert Skill Total Prediction Rate:	5 38. 8.7 30. Score: 77.	74 50174 56889 82287 0.2029956 52605

- Dust, smoke and other aerosol types integrated within COAMPS.
- Developed real-time verification of visibility and AOD.
- Update to NRL Dust Source Database improved dust storm prediction rate
- Goal is to improve Navy operational capability with a new generation of cloud and aerosol products

Next Generation Global-Regional System Navy Environ. Pred. SysTem Utilizing the NUMA CorE (NEPTUNE)

3-D Spectral Element Model
High order accuracy core (NUMA)
Extremely scalable
Mesoscale, global options (w/ MPI)

- Adaptive mesh refinement (AMR)
- Incorporation of physics underway

Real-Data Simulation (Dx=100 km, 24 h fcst from 00Z 25 June 2013) 500-hPa Wind Speed (m s⁻¹)

Example of a 6-class microphysics scheme in NEPTUNE for an idealized splitting supercell case.

NEPTUNE is being developed as a possible next-generation unified global-regional prediction system using the NUMA spectral element core.

S. Gabersek, A. Reinecke, K. Viner, E. Hendricks, J. Doyle (NRL), F. Giraldo (NPS) NRL Marine Meteorology Division

WGNE March 2015

Questions?

Improved Cloud Fractions Xu-Randall

- The high cloud cover shows perhaps the most notable improvement, particularly in tropical convective regions.
- Significant improvement in the surface solar radiation budget.

WGNE 2014

DTG:2014121700

Ob Type	Sensor	OB Count/Day	% Total	OB Impact %
Satellite	All	9.82x 10 ⁶	90.88	59.3
HyperSpec IR	IASI(2), AIRS	4.80x 10 ⁶	44.44	16.5
MW Sounder	AMSUA(7), ATMS SSMIS(3), MHS(4) GPS-RO (10)	3.19x 10 ⁶	29.56	22.8
Feature Tracked Winds	GOES(3), Polar(3), MeteoSat(2), GMS, LeoGeo,	1.70x 10 ⁶	15.77	23.5
OSWV	ASCAT(2), WindSat	6.40x 10 ⁴	0.59	2.2
MW Imager OSWS, TPW	SSMIS, WindSat(TPW)	7.20x 10 ⁴	0.67	4.0

Monitoring Satellites in NWP

- Monitoring of operational data streams at FNMOC
 - http://www.nrlmry.navy.mil/metoc/ar_monitor/

COAMPS **Air-Sea Coupled Forecasts During DYNAMO Period**

15km

60

With higher resolution, **MJO less likely** to get stuck over MC

2015

Atmospheric biases reduced when going from fixed to observed SSTs, reduced even more in coupled system.

NG

100F 120F

60E 80E

WGNE March 2015

COAMPS Air-Ocean Coupling ONR Philippine Straits Experiment

Easterly monsoon surge produces oceanic dipole eddy pair propagating west/northwest

Chlorophyll Concentration

NRL Marine Meteorology Division

COAMPS Impact of Unmanned Aerial Systems (ScanEagle)

UAS-NoUAS Assimilation Experiments

Significant error reduction in temperature and moisture in MABL.

COAMPS Aerosol Modeling Aerosol Microphysics for NWP

Upgrades to the NRL Dust Source Database (DSD)

- Variable-resolution DSD
- One month Sahara summer case study (May 30-June 25, 2014) completed 1QFY15
- Higher dust storms prediction rate for the NRL DSD (45.64%) versus the OPS TOMS DSD (38.5%)
- Nearly equal skill with respect to visibility

COAMPS Sahara Case Study May 30-June 25, 2014

Dust databases:	DSD (1 km)	TOMS (1 deg)
Total WMO station obs: Total dust storm obs:	2207 574	2207 574
Dust Storm Prediction Rate:	45.64	38.50
Dust Storm False Alarm Rate:	13.10	8.76
Dust Storm Threat Score:	33.25	30.82
Dust Storm Gilbert Skill Score:	0.21	0.20
Visibility Prediction Rate:	76.17	77.53

NRL Developed ICAP Global Multi-model Aerosol Forecast Ensemble:

BSC, ECMWF, FNMOC/NRL, JMA, NASA, NOAA, UKMO

- The International Cooperative for Aerosol Prediction (ICAP) is a grass roots organization of aerosol forecast developers to share best practices and speak with a common voice on aerosol observation needs for DA.
- Ensemble open to any consistent quasi-operational global aerosol model. Currently working on AOT and surface concentrations for multi species and dust only versions, but looking towards 3 full dimensions.
- Specific error metrics are kept by centers, ensemble products distributed via GODAE server.
- As expected from a multi model ensemble, the ICAP MME has the best RMSE scores and a more consistent bias distribution over the globe.

WGNE March 2015

Global DA: NRL Global Hybrid 4D-Var

- The NRL hybrid 4D-Var is an observation-space based global 4D-Var data assimilation system implicitly using a partial flowdependent initial background error covariance.
- Ensemble technique and traditional error covariance model are used to generate the flow-dependent and the static initial background error covariance, respectively.
- The matrix-vector multiplications of the flow-dependent and static initial background error covariance with the adjoint sensitivity at initial time are combined.
- Preliminary results suggested that hybrid 4D-Var resulted better NOVGEM forecasts then original 4D-Var. Additional validation tests are underway.
- The hybrid 4D-Var requires about 50% computational resource than the original 4D-Var.
- We are in the process to transition the global hybrid 4D-Var system to operations.

Global DA: NRL Global Hybrid 4D-Var

Air-Ocean Two-Way Coupling

