

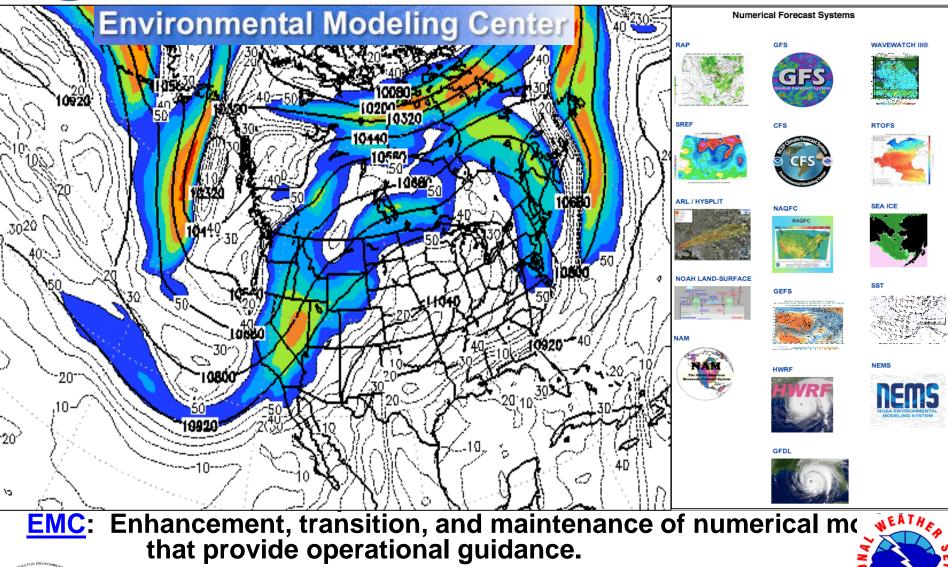
The NOAA Operational Numerical Guidance System

Michael Ek Environmental Modeling Center (EMC) NOAA/NWS/NCEP

30th Session of the Working Group on Numerical Experimentation (WGNE-30) NOAA Center for Weather and Climate , College Park, Maryland, USA, 23-26 March 2015

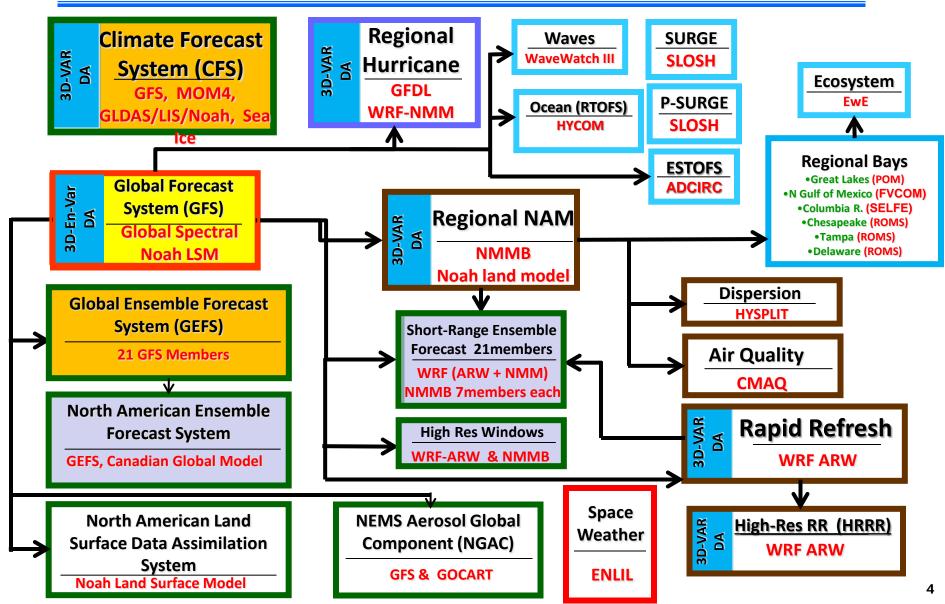
NCEP

Outline


- NCEP and EMC
- Production Suite
- Components:
 - o Data Assimilation
 - Global Forecast System (GFS), Global Ensemble (GEFS)
 - Unified Global Coupled System (medium-range to seasonal)
 - North American Multi Model Ensemble (Seasonal)
 - North America Mesoscale (NAM) model, Hurricane (HWRF), Short-range Ensemble Forecast (SREF)
 - o Hurricane, Land-Hydrology, Ocean, Sea-ice
 - NOAA Environmental Modeling System (NEMS)
- NCEP/EMC Model Evaluation Group (MEG)

National Centers for Environmental Prediction Specialized Services – Common Mission

NOAA



NOAA's Operational Numerical Guidance Suite (Feb 2015)

NOA

Data Assimil. Plans: Next Global Implementation (~Dec. 2015)

- Hybrid 4D EnVar:
 - Hourly time bins (7 time levels per analysis).
 - 80 ensemble members.
 - T1534L64 deterministic with T574L64 ensembles used for T574 analysis increments
 - Modified thinning of data in time.
- Observation changes:
 - Cloudy Microwave Radiances: Cloud analysis impacted by covariances from Hybrid and cloud impacted microwave radiances.
 - Upgraded CRTM2.2.
 - Additional aircraft and AMV data.
 - Bias correction of aircraft temperature observations.
- NSST:
 - Variation in Near Sea-Surface Temperature of ocean included in both forecast model and analysis.
 - Directly uses radiances and accounts for depth of observations in NSST analysis.
 - Diurnal cycle of Ocean and observations accounted for much better.

John Derber

Global Model Plans

Q2FY15 implementation (January 14, 2015)

- T1534 Semi-Lagrangian (~13km)
- Use of high resolution daily SST and sea ice analysis
- High resolution until 10 days
- Physics:
 - Radiation modifications
 - Reduced drag coefficient at high wind speeds
 - Stationary convective gravity wave drag
 - Soil Moisture climatology from CFSv2
 - Changes to roughness length calculations

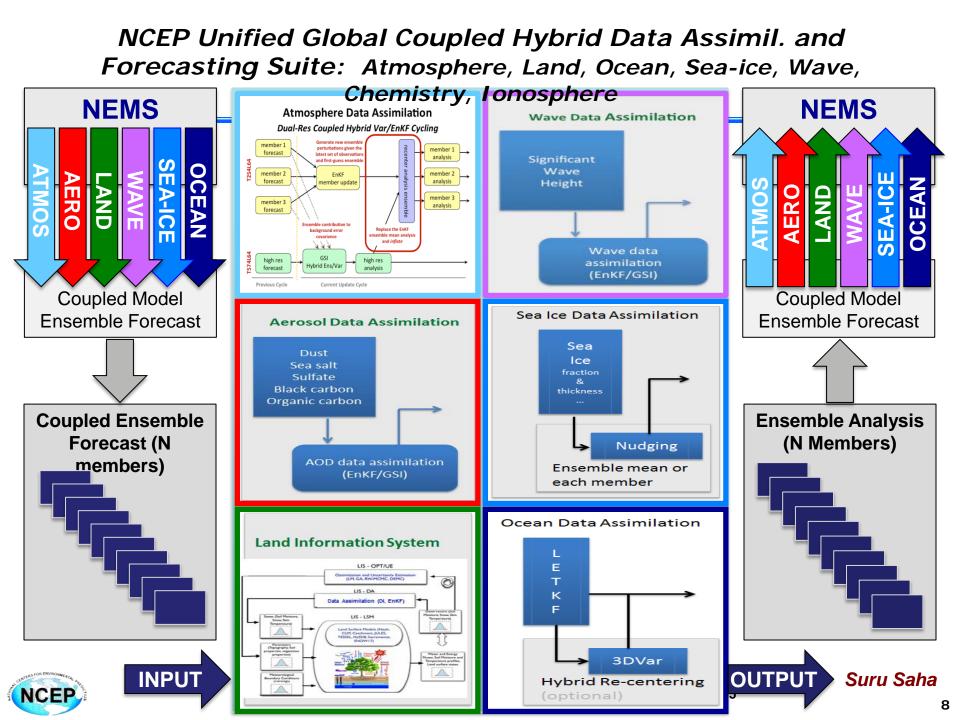
FY16

- NEMS
- 4D-Hybrid EnVAR
- Convective upgrade
- Land and surface layer upgrade
- FY17
- T1534L64 -> T1534L128
- Enhanced physics

Aerosol prediction – initially lower resolution used as forcing in high res.

WAM – Whole Atmosphere Model – initially lower resolution up to 600km

Mark Iredell


Global Ensemble Plans

	Current	Next GEFS Configuration (v11.0.0)
Model	GFS Euler model (V9.0.1)	GFS Semi-Lagrangian model (V10.0.0)
Horizontal res.	T254 (~52km) for 0-192 hours, T190 (~70km) for 192-384 hrs	TL574 (~34km) for 0-192 hours, TL382(~52km) for 192-384 hr
Vertical res.	L42 hybrid levels	L64 hybrid levels to match GFS and DA
Compute	84 nodes (+ post process) for 55 minutes	300 nodes (first 35 minutes), 250 nodes (2nd 30 minutes)
Output	every 6-hr for 1*1 degree pgrb files	every 3-hr for 0.5*0.5 degree pgrb files
Schedule	Feb. 2015 – deliver codes/scripts to NCO	Apr. 2015 – implementation (WCOSS-phase II)

- Increase model resolution and membership.
- Introduce other stochastic schemes:
 - Stochastic Kinetic Energy Backscatter (SKEB) represents processes absent from model.
 - Stochastic Perturbed Physics Tendencies (SPPT) designed to represent the structural uncertainty (or random errors) of parameterized physics. Biggest impact for tropics.
 - Stochastically-perturbed boundary layer HUMidity (SHUM) designed to represent influence of sub-grid scale humidity variability on the the triggering of convection.
 - Stochastic perturbed land-surface.
- Extend GEFS to 35 days: Coupling with ocean/ice model, or alternate method.
 Yuejian Zhu

- Real-Time definition: Each month a global NMME seasonal forecast of SST, precip and T2m on a global 1X1 grid in support of CPC operations. (This is "phase I")
- In early 2014, the SIX real time participants were CFSv2, NCAR-UoFlorida-CCSM3, NASA-GEOSS, GFDL-CM2, Canadian CMC3 and CMC4. (Retired participants include CFSv1, IRI-f and IRI-a)
- During 2014, two models were added: NCAR-UoFlorida-CCSM4, and GFDL-Flor-a/b. A third model NCAR-CESM1 is in the pipeline (hindcasts 1982-present to be finished). CCSM3 has been retired by late 2014. Currently SEVEN models, soon EIGHT. Close to 100 ensemble members in hindcasts. More members in real time.
- A review of NMME took place Sept 2014 and NMME as a CPUdistributed system will be continued for seasonal prediction and is considered 'operational'.
- The phase II R&D effort (<u>daily</u> data to study intra-seasonal) has yielded a big archive managed at NCAR.
- The IMME carries on each month. IMME at NCEP ~ Eurosip (at ECMWF).

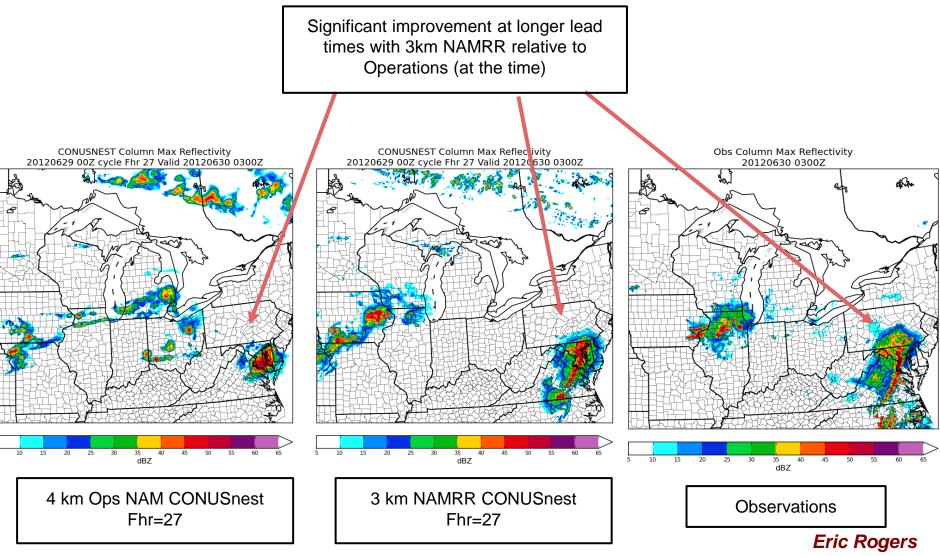
http://www.cpc.ncep.noaa.gov/products/NMME

Huug van den Dool, CPC

Recent and planned upgrades to North American Mesoscale (NAM) system

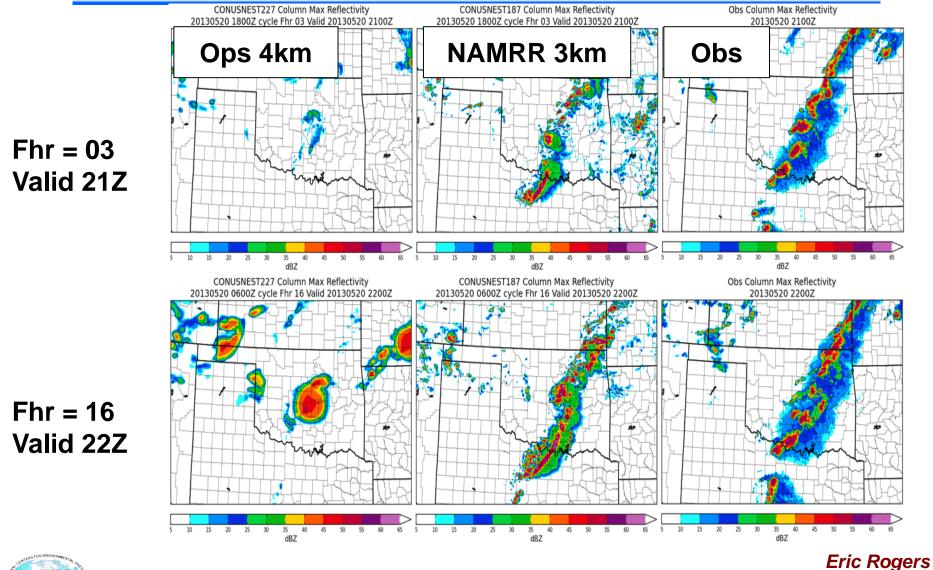
NAM 2014Q4 upgrade

- NAM forecast configuration:
 - -12km parent to 84-hr.
 - 4 fixed nests: 4km CONUS, 6km Alaska, 3km HI/PR to 60-hr.
 - -1.33km relocatable storm scale nest to 36-hr.
- Hybrid variational ensemble analysis; new satellite bias correction algorithm.
- RRTM radiation scheme.
- Ferrier-Aligo microphysics; tuned to improve severe storm structure.
- Convection: Modified BMJ (moister profiles) to improve 12km parent bias; explicit in nests except AK.


NAM 2016Q1 upgrade

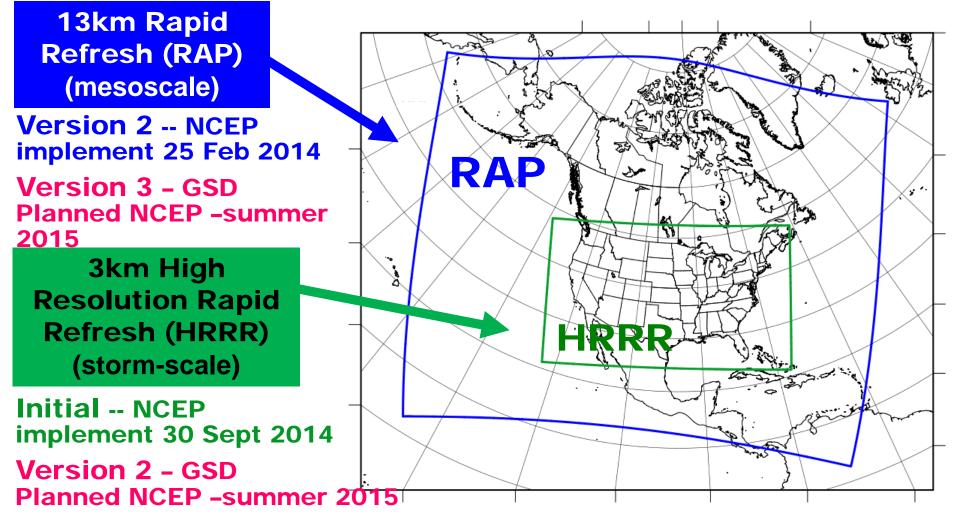
- CONUS/Alaska nest to 3km, explict convection in AK nest.
- New shallow convection scheme in 12km parent NAM; improves cold season QPF bias.
- More frequent calls to radiation/physics.
- Digital filter with radar-derived temperature tendencies.
- 4-d EnKF.
- Rapidly updated hourly assimilation system (NAMRR).
- Others T.B.D.

June 29-30, 2012 "DC Derecho" - 27hr fcst NAMRR Test with 3km CONUSnest


ATMOS

NOAF

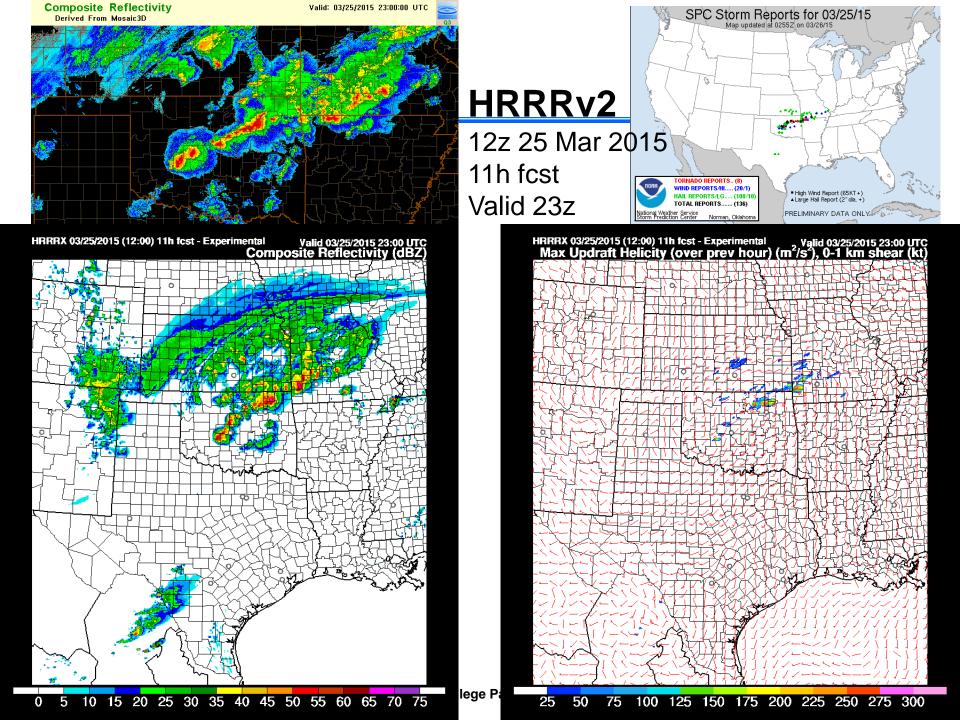
Moore OK Severe Weather Event 20 May 2013



NCEP 143 YOR ENVIRONMENTAL PROF

Rapid Refresh and **HRRR** NOAA hourly updated models

(situational awareness for energy, aviation, severe weather, etc.)


NCEP RAPv3 and HRRRv2

Model	Run at:	Domain	Grid Points	Grid Spacing	Vertical Levels	Pressure Top	Boundary Conditions	Initialized
RAP	GSD, NCO	North America	758 x 567	13 km	50	10 mb	GFS	Hourly (cycled)
HRRR	GSD	CONUS	1799 x 1059	3 km	50	20 mb	RAP	Hourly - RAP (no-cycle)

Model	Version	Assimilation	Radar DA	Radiation LW/SW	Microphysics	Cumulus Param	PBL	LSM
RAP	WRF-ARW v3.6+	GSI Hybrid 3D- VAR/Ensemble	13-km DFI	RRTMG/RR TMG	Thompson – aerosol v3.6.1	GF v3.6+	MYNN v3.6+	RUC v3.6+
HRRR	WRF-ARW v3.6+	GSI Hybrid 3D- VAR/Ensemble	3-km 15-min LH	RRTMG/ RRTMG	Thompson – aerosol v3.6.1	GF shallow	MYNN v3.6+	RUC v3.6+

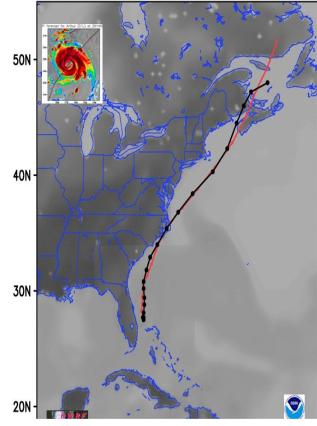
Model	Horiz/Vert Advection	Scalar Advection	Upper-Level Damping	6 th Order Diffusion	SW Radiation Update	Land Use	MP Tend Limit	Time- Step
RAP	5 th /5 th	Positive- Definite	w-Rayleigh 0.2	Yes 0.12	20 min	MODIS Fractional	0.01 K/s	60 s
HRRR	5 th /5 th	Positive- Definite	w-Rayleigh 0.2	Yes 0.25 (flat terr)	15 min with SW- dt (Ruiz-Arias)	MODIS Fractional	0.07 K/s	20 s

NCEP Mesoscale Ensembles Replace Regional Deterministic Guidance: Current and Future

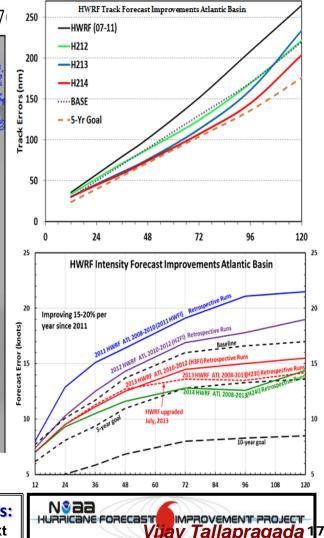
Current	~2015	~2018	
SREF continental scale	SREF continental scale	SREF continental scale	
WRF-ARW, -NMM, NMMB	WRF-ARW & NMMB	WRF-ARW & NMMB	
7 each = 21 members 16km	13 each = 26 members ~16km	13 each = 26 members ~9km (parent)	
35 levels 6 hourly to 87 hr	40 levels 6 hourly to 87 hr NARRE-TL run hourly to 18 hr	50-60 levels 6 hourly to 96 hr. <u>SREF_RR</u> run hourly to 24 hr	
Convection-Allowing- Scale	Convection-Allowing-Scale	Convection-Allowing- Scale Ensemble	
hrly 3km HRRR & NAM nest run to 15 h for CONUS Irregular suite of guidance 3- 6km, ~6 hourly to 48/60 hr for CONUS, Alaska, HI, PR	Upgrade irregular suite (HiResW) to ~3km, 6 hourly to 48/60 hr for CONUS, Alaska, HI, PR	HREF_RR (high-res ensemble fcst): Multiple hourly 3km run to 24 hr; HREF: run 6 hourly extended to 60 hr for CONUS, Alaska, Hi, PR	
Storm Scale	Storm Scale	Storm Scale Ensemble	
Single placeable sub-nest [fire weather run] 1.33-1.5km Run 6 hourly to 36 hr	Single placeable/movable sub- nest 1-1.5km Run 6 hourly to 36 hr	Storm-scale ensemble (SSE) Multiple placeable/movable sub-nests: ~1km run hourly to 18 hr and run 6 hourly to 36 hr	

Jun Du¹⁶

NCEP Operational HWRF Model: NOAA's State-of-the-art Hurricane Prediction System

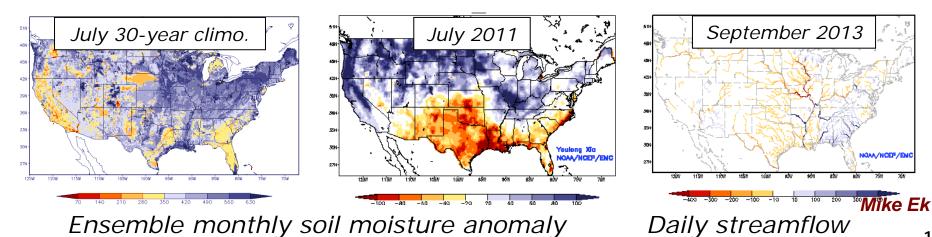

HWRF Model Configuration:

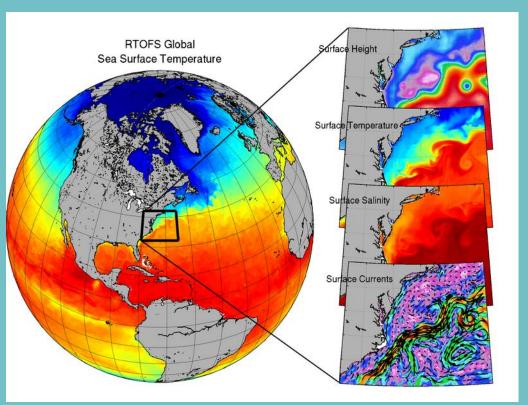
- Three telescopic domains with high resolution storm following nests: 27km/9km/3km; 61L going to 18km/6km/2km in 2015.
- Coupled to MPI POM Ocean Model worldwide using NCEP Coupler.
- Sophisticated vortex initialization.
- EnKF/GSI hybrid regional DA system with real-time inner core aircraft data assimilation.
- Advanced physics tailored for hurricane conditions based on observations.
- Coupled Noah LSM in 2015
- Expanding the scope of operational HWRF for all global tropical cyclones in 2015.


Accurate and reliable Track, Intensity & Structure Forecasts

HWRF forecast for Arthur (01L) at 201407

Real-time HWRF products, all global TCs: http://www.emc.ncep.noaa.gov/gc_wmb/vxt


Significant Improvements in the past 5 years, meeting HFIP Goals


- 5 Aug 2014: North American LDAS (NLDAS) operational.
- <u>NLDAS</u>: 4 land models run uncoupled, driven by CPC observed precipitation & NCEP R-CDAS atmospheric forcing.
- <u>Output</u>: 1/8-deg. land & soil states, surface fluxes, runoff
 & streamflow; anomalies from 30-yr climatology for drought.
- <u>Future</u>: higher res. (~3-4km), extend to N.A./global domains, improved land data sets/data assimil. (soil moisture, snow), land model physics upgrades inc. hydro., initial land states for weather & seasonal climate models; global drought information.

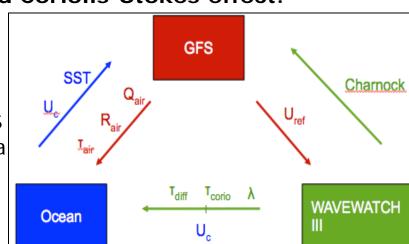
Global and Basin Scale Ocean Forecast Systems

Primary Users: NOAA: NWS, NOS, IOOS, OAR, JCSDA External: DHS, Academia, Japan (JAEA), India (INCOIS)

- Eddy Resolving Ocean Modeling and Initialization
- Coupled Modeling for Hurricanes
 (Air-Sea-Wave flux interaction, mixing)
- Coupled Modeling for short-term, medium-term and seasonal scales (Air-Sea-Ice-Wave flux interactions, ensembles)
- Coupled Ecosystem Forecasting (Biogeochemical, NPZD, tracers)
- All Ocean Forecast Systems presently based on HYCOM, RTOFS (Real Time Ocean Forecast Systems) represents line of products

Strong collaboration with US Navy, leveraging core HYCOM and data assimilation developments at NRL.

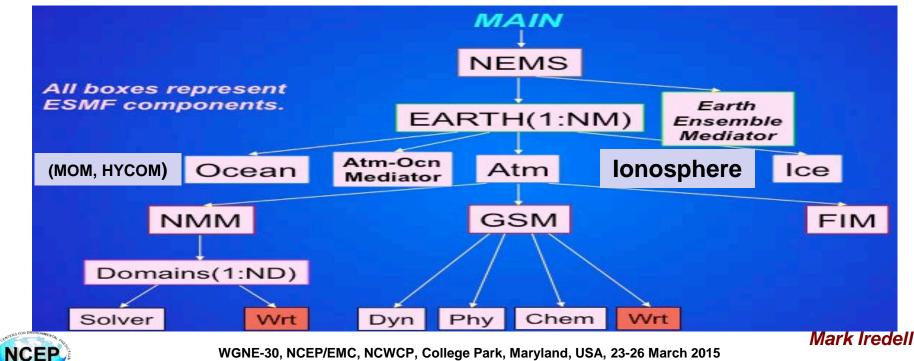
Avichal Mehra



- <u>GFS model</u> air-sea fluxes depend on sea state (roughness -> Charnock).
- WAVEWATCH III model forced by wind from GFS and currents from Ocean.
- <u>Ocean model</u> forced by heat flux, sea state dependent wind stress modified by growing or decaying wave fields and Coriolis-Stokes effect.
- <u>Current Status</u>:
 - Wave model driven in uncoupled mode with GFS 10m winds for global forecasts (4 cycles a day out to 180 h of forecast).
 - Hurricane wave model uses blend of GFS and HWRF winds for forecasts (4 cycles a day out to 126 h of forecast).
 - Use first guess model results from previous cycle as final wave analysis.

Planned Upgrades:

- Drive the wave model in a coupled mode with atmospheric winds (for wave dependent boundary conditions in atmospheric models).
- Include wave-ocean coupling (currents from ocean model to wave model, and wave induced langmuir mixing & stokes drift from wave model to ocean).
- Data assimilation of significant wave heights to develop a wave analysis: GSI and LETKF approaches.
- Planned sources of data: Spectral data from ocean buoys; Satellite data from altimeters.



- Unify NCEP operational systems under a single framework.
- More easily share common structures/components.
- Expedite interoperability.
- First two systems under NEMS implemented in NCEP ops: NAM, and NEMS Global Aerosol Component (NGAC).

- Verifies and evaluates daily performance of EMC forecast/analysis systems from a synoptic and mesoscale perspective to complement the statistical perspective.
- Conducts weekly EMC map discussion of model performance
 - Audience recently expanded to involve more NWS regional and local forecasters.
- Project benefits:
 - Provides critical feedback to modelers and branch chiefs.
 - Provides streamlined feedback to outside users with model concerns.
 - In first 3 years, several model problems noted, brought to attention of EMC modeling team, and corrected or at least mitigated in operations.
- MEG also to work closely with forecasters to understand and evaluate proposed model upgrades prior to the short formal evaluation period.
- How can MEG best include experience and knowledge of model users?
 Glenn White, Geoff Manikin, Corey Guastini

Thank you!

