

DWD report

30th WGNE-meeting 23-26 March 2015, NCEP, Washington

Michael Baldauf, Günther Zängl, Michael Buchhold, **Roland Potthast**

Supercomputing environment at DWD (Dec. 2014)

One production and one research computer Cray XC.., each with

- 2 Cabinets with 364 compute nodes (Cray XC30) each node: 2 * Intel Xeon (Ivy Bridge, 2.5 GHz, 10 cores), 64 Gbyte → 7280 cores, 22.75 Tbyte Linpack R_{max}=133.7 Tflop/s
- 3 Cabinets with 432 compute nodes (Cray XC40) each node: 2 * Intel Xeon (Haswell, 2.5 GHz, 12 cores), 128 Gbyte → 10368 cores, 54 Tbyte Linpack R_{max}=390.6 Tflop/s

Rank 128 & 129 in Top500-list from Nov. 2014

Login nodes: 2 * (prod./research) login nodes: 12 (14) nodes each node: 2x Intel Xeon (Ivy Bridge, 10 cores), 128/512 GByte

non-hydrostatic parameterised convection $\Delta x \approx 13$ km, $\Delta t = 120$ (24) sec., 2.95 Mio. * 90 GP T = 180h (00, 12 UTC runs)

120h (06, 18 UTC runs)

non-hydrostatic non-hydrostatic parameterised convection convection-permitting $\Delta x = 7$ km, $\Delta t = 66$ sec., $\Delta x = 2.8$ km, $\Delta t = 25$ sec., 421 * 461 * 50 GP 665 * 657 * 40 GP T = 78 h (00, 06, 12, 18 UTC runs) T = 27 h (every 3 hrs)

Global model ICON

(oper. since 20 Jan. 2015) $\Delta x \approx 13 \text{ km}, \Delta t = 120 (24) \text{ sec.},$ 2.95 Mio. * 90 GP 180 h (00, 12 UTC runs) 120 h (06, 18 UTC runs) grid area: 173 km² H = 75 km

ICON (zooming area Europe)

 $\Delta x \sim 6.5$ km # levels: 60 120 h (00, 06, 12, 18 UTC runs) grid area: 43 km² H = 22.5 km

COSMO-DE (-EPS)

 $\Delta x \sim 2.2$ km, $\Delta t = 20$ sec. # levels: 65 27 h (00,03, ...,18,21 UTC run) grid area: 5 km² H = 22 km EPS with 40 members

Global model ICON

(replaced the former GME)

Model equations (dry dynamical core)

(Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2014, QJRMS)

$$\partial_t \boldsymbol{v_n} + (\zeta + f) \, \boldsymbol{v_t} + \partial_n K + w \, \partial_z \boldsymbol{v_n} = -c_{pd} \theta_v \partial_n \pi \partial_t \boldsymbol{w} + \vec{v_h} \cdot \nabla w + w \, \partial_z w = -c_{pd} \theta_v \partial_z \pi - g \partial_t \rho + \nabla \cdot (\vec{v}\rho) = 0 \partial_t (\rho \theta_v) + \nabla \cdot (\vec{v}\rho \theta_v) = 0$$

v_n,w: normal/vertical velocity component

ρ: density

- θ_{v} : Virtual potential temperature
- K: horizontal kinetic energy
- ζ : vertical vorticity component
- π : Exner function

red: independent prognostic variables

Parameterisations of physical processes

Process	Authors	Scheme	Origin	
Radiation	Mlawer et al. (1997) Barker et al. (2002)	RRTM (later with McICA McSI)	ECHAM6/IFS	
	Ritter and Geleyn (1992)	δ two-stream	GME/COSMO	
Non-orographic gravity wave drag	Scinocca (2003) Orr, Bechtold et al. (2010)	wave dissipation at critical level	IFS	
Sub-grid scale orographic drag	Lott and Miller (1997)	blocking, GWD	IFS	
	Doms and Schättler (2004)	sub-grid diagnostic	GME/COSMO	
Cloud cover	Köhler et al. (new development)	diagnostic (later prognostic) PDF	ICON	
Microphysics	Doms and Schättler (2004) Seifert (2010)	prognostic: water vapor, cloud water,cloud ice, rain and snow	GME/COSMO	
Convection	Tiedtke (1989) Bechthold et al. (2008)	mass-flux shallow and deep	IFS	
Turbulent transfer	Raschendorfer (2001)	prognostic TKE	COSMO	
	Louis (1979)	1 st order closure	GME	
	Neggers, Köhler, Beljaars (2010)	EDMF-DUALM	IFS	
Land	Heise and Schrodin (2002), Machulskaya, Helmert, Mironov (2008, lake)	tiled TERRA + FLAKE + multi-layer snow	GME/COSMO	
	Raddatz, Knorr	JSBACH	ECHAM6	

Systematic changes compared to GME

> less diffusive numerics \rightarrow more fine scale structures

Illustration 1: RH700

ICON

GME

Daten: OOz/12z-Lauf des ICON-Modells (Deutscher Wetterdienst) (C) Wetterzentrale www.wetterzentrale.de

Daten: O0z/12z-Lauf des GME-Modells (Deutscher Wetterdienst) (C) Wetterzentrale www.wetterzentrale.de

Systematic changes compared to GME

- ➢ less diffusive numerics → more fine scale structures
- changed diagnostics of temperature and geopotential / reduced bottom pressure for extrapolation beneath the ground
- changed convection parameterisation (Bechthold et al.-scheme)
 more uniform distribution of precipitation

Illustration 3: 6-hourly precipitation, 28.12.2014, vv=12h until vv=18h

ICON(pre-oper.)

Oper. GME20L60

DWD

Mean sea-level pressure, RMSE in hPa

blue: GME, red: ICON

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD 6

Wind at 925 hPa, vector-RMSE in m/s

blue: GME, red: ICON

RV = reduction of variance

Geopotential height at 500 hPa, RMSE in m

blue: GME, red: ICON, green: IFS

RV = reduction of variance

DWD

Temperature at 700 hPa, RMSE in K

blue: GME, red: ICON, green: IFS

RV = reduction of variance

Deutscher Wetterdienst Wetter und Klima aus einer Hand

XXL scalability test (computed at ECMWF)

- Mesh size 5 km (~21M grid points), 90 levels, 1000 time steps
- No output (field size too large for NetCDF3, technical issues with NetCDF4)

Summary

- Significant improvement of forecast skill compared to GME
- Higher flexibility thanks to grid nesting capability \rightarrow
- Higher efficiency than GME on massively parallel computer architectures
- Large range of applications in environmental modelling thanks to **ART module**

Upcoming upgrades at DWD:

- Q1-Q3: Tile approach for TERRA
- Q2/Q3: Activation of nested domain over Europe ("ICON-EU")
- Q4: First step towards ensemble data assimilation

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICON-ART

ART = <u>A</u>erosol and <u>R</u>eactive <u>T</u>race gases

volcanic ash forecast is used

- Source strength, source height, temporal development
- as an alert system at DWD • Updated at every advection time step before the tracer advection
- Input file: "name" "lon("N)" "lat("E)" "active" "source strength" "source height"
- Gaussian distribution of source strength... as a function of plume height (Mastin et al. 2009), measured size distribution (Schumann et al. 2011)

B. Vogel, KIT

B. Vogel, KIT

Forecast of a Saharan dust outbreak

optical thickness τ of interest for solar energy forecast!

$$I(\lambda) = I_0 e^{-\tau(\lambda)}$$
 for $\lambda = 550$ nm

TAU_DUST

valid: 22 MAY 2014 12 UTC ... after 12 hour(s) forecast time

TAU_DUST

Global Ensemble Data Assimilation (EDA)

- VarEnKF
- 40 Members
- 1 Deterministic

Global EDA (VarEnKF) Development

Global EnKF + EPS for ICON

- 1. Full System with all current observation systems running in BACY experiments (80/40km)
- 2. Currently: verification against own analysis better or comparable to current 3DVAR system
- 3. Work in progress on **spread** in different regions (upper troposphere, Europe, ...)
- 4. Adaptive localization calibration is ongoing
- 5. Technical work on speed (ICON 13km) ongoing (02/2015 to be finished)
- 6. Archive/Storage challenges remain severe

Verifikation der Vorhersagen vom 01.11.2013 00UTC bis 10.11.2013 00UTC Experiment 006 Experiment 006 Politikation Prosisterz Lipien: Klima Parameter: Geopotential, Gebiet: NH , Druckfläche 0500 hPa

Verifikation der Vorhersagen vom 01.11.2013 00UTC bis 10.11.2013 00UTC Experiment 006 Experiment 051 Prosistenz Linien: Klima Parameter: Geopotential, Gebiet: EUROPE_E , Druckfläche 0500 hPa

Kilometer Scale Ensemble Data Assimilation (KENDA)

• LETKF + DetAnalysis

KENDA and EPS Development

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Current State

KENDA for COSMO

- 1. Full System with conventional data running
- 2. Work Latent Heat Nudging, done, works well!
- Further Observation Systems under development (e.g. SEVIRI, GPS/GNSS, Lidar, ...)
- 4. Longer Periods/Winter Periods to be tested.
- Technical work on operational setup (member loss) ongoing
- 6. Archive/Storage challenges remain severe
- 7. Pattern Generator and further Refinements (Localization, Covariance Inflation, ...)

EQ

15

2500 2200 2000

> 1800 1600 1400

<u>LETKF</u> vs. <u>Nudging</u> (using COSMO-DE soil): KENDA score chart

Deutscher Wetterdienst Wetter und Klima aus einer Hand

	LETKF vs. Nudging			
	Variable	RMSE	bias	
upper air	geopotential	=	=	
	temperature	II	II	2
	(relative humidity)	+	II	4
	wind speed	+	=	
	wind direction	(+)	=	6
surface	2-m temperature	(+)	=	٤
	2-m dew point temp.	=	=	10
	10-m wind	=	=	
	surface pressure	-	=	
	total cloud	=	=	
	low cloud	(+)	(+)	
	mid-level cloud	+	(+)	
	high cloud	(-)	(-)	

LETKF used fewer RH obs than nudging, due to stricter QC !!

DWD's Ensemble Prediction System COSMO-DE-EPS

Members 1 - 20 (operational setup)


```
"-" soil moisture anomaly
```


BC-EPS

Current Research: Extension to 40 Members

- ➔ increase number of boundary forecasts
 - current setup: **4** x 5 = 20 members
 - future setup: **8** x 5 = 40 members
- → the 4 additional boundary forecasts: selected members from COSMO-LEPS ensemble (driven by the global ECMWF ENS)

Verification Results (precipitation)

Current Research:

Use of IC from the <u>Kilometer scale EN</u>semble <u>Data Assimilation</u> (KENDA) based on the LETKF scheme (Hunt et al., 2007)

Results:

Ensemble Added Value

Future plans

- → operational use of KENDA for IC perturbations
- ➔ add new physics perturbations or alternative perturbation methods (e.g. stochastic physics)
- → use of global ICON EPS for BC perturbations

Stochastic physics - Outline of the method

The main idea to simulate the model error is

- to approximate the <u>empirically determined</u> error of the model tendencies from physical parameterizations by a random process with the <u>same</u> <u>statistical properties;</u>
- to add this estimate of the model tendency error to the right-hand side of the governing equations, e.g.

$$\frac{\partial T}{\partial t} = \left[\frac{\partial T}{\partial t}\right]_{det} + \eta(t)$$

<u>Disadvantage</u>: lack of understanding of essential physics of model error <u>Advantages</u>:

- the entire model error is represented (important for data assimilation);
- properties of the simulated model error η (noise amplitude, time and space correlations) are not taken arbitrary

The model error is estimated as "3h forecast – analysis" differences from Ekaterina Machulskaya (DWD)

Stochastic physics - A model for the model error

The model error is assumed to obey a stochastic differential equation

 σ , γ , and λ are determined from the available statistics (time series of "3h forecast – analysis").

 σ , γ , and λ are made <u>flow-dependent</u>: if there is a clear dependence of σ , γ , and λ on some model fields (e.g. temperature, humidity, wind speed, temperature tendency, etc.) \rightarrow those quantities are chosen to be predictors for σ , γ , and λ .

from Ekaterina Machulskaya (DWD)

Revised Infiltration in TERRA (SVAT-model)

- COSMO-DE changed land-use data set at 18/04/2014 from the old GLC2000 to the new GlobCover2009
- Enhanced LAI in GlobCover increased evapotranspiration
- Problem:
 - \rightarrow dry out of root zone of soil possible
 - \rightarrow plants achieve their wilting point
 - \rightarrow shutdown of latent heat flux
- Solution: enhanced infiltration parameterization (\rightarrow reduce runoff!)
- Experiment start 2013040100 5 months assimilation
- Full experiment start 2014051000 for summer 2014 V5.0.1.1

from Jürgen Helmert (DWD)

Revised infiltration

$$I'_{max} = \begin{cases} 0 : T_{sfc} \leq T_0 \\ : T_{sfc} > T_0 \end{cases} (10.5)$$

$$K_w(w_l) = K_0(z) exp \left[K_1(w_{PV} - \bar{w}_l) / (w_{PV} - w_{ADP}) \right]$$

$$K_0(z) = K_{0,c}e^{-f(z-d_c)} \quad \text{Profile of sat. hydr. conductivity,} \\ \text{Decharme (2006)} \end{cases}$$
NORM. SOIL HYDRAULIC CONDUCTIVITY

Revised infiltration CDE- domain average

CONSORTIUM FOR SMALL SCALE MODELING **Deutscher Wetterdienst** Wetter und Klima aus einer Hand

effect: soil moisture at root level increased; runoff reduced

Revised infiltration CDE- Verification

Renewable Energy Meteorology Projects at

9

Bundesministerium für Wirtschaft und Energie

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

EWeLiNE 12/2012-11/2016

- 23 Researchers (10 IWES + 13 DWD)
- Focus: improved day ahead forecasts for renewable energies
- ➔ Research topics:

50hertz

- Improved initial conditions by applying new data types (data assimilation)
- More accurate forecasts by optimizing the model physics
- More reliable predictions through optimized ensemble forecasts and new probabilistic products
- Optimized Model Output Statistics

Integration of new products in desicion making processes!

amprion

energy & meteo

ORKA 8/2012-12/2015

- 4 Researchers (2 emsys + 2 DWD)
- Focus: improved short-term forecasts (12h) for renewable energies
- ➔ Research Topics:
 - **Optimized ensemble forecasts** for renewable energies
 - Development of ensemble products for grid security aspects; "worstcase" scenarios, risk management,...
- Iterative cycle of evaluation and test results

50hertz

avacon

from Kristina Lundgren (DWD)

New challenges to NWP

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Availability of suitable observation data sets for renewables is restricted

A few critical weather situations in day-to-day business:

- ➔ Frontal passages (ramps)
- Intensity, location (timing)
- → (Small-scale) low-pressure systems
- Intensity, location (timing)
- Pronounced diurnal cycle of the Planetary Boundary Layer (PBL)
- Convective events
- ➔ Fog/Low stratus clouds

Source: http://www.sat24.com/history.aspx

Most critical when both wind and radiation are difficult to predict (example: October 12, 2013)

from Kristina Lundgren (DWD)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

EWeLiNE

LETKF=Local Ensemble Transform Kalman Filter (Hunt et al., 2007)

Andrea Steiner, DWD, EWeLiNE

Diurnal cycle in wind speed

- Sensitivity study August 18-19, 2012
- → Low Level Jet is not captured in the forecast:

Modified turbulence parameters allow for higher nocturnal wind speeds

Observations operated by Meteorologisches Observatorium Lindenberg

Improved radiation forecasts

SW [W m⁻²]

 Underprediction of shortwave radiation on cloud free days: Exampel for COSMO-DE forecasts August, 2013

Modified aerosol climatology shows an improvement due to reduced optical thickness of the atmosphere

Example: Hourly averaged SW for clear sky day

Carmen Köhler, DWD, EWeLiNE

Wetter und Klima aus einer Hand 💙

Deutscher Wetterdienst